Solar eclipse of March 27, 1941

Last updated
Solar eclipse of March 27, 1941
SE1941Mar27A.png
Map
Type of eclipse
NatureAnnular
Gamma −0.5025
Magnitude 0.9355
Maximum eclipse
Duration461 s (7 min 41 s)
Coordinates 26°12′S110°54′W / 26.2°S 110.9°W / -26.2; -110.9
Max. width of band276 km (171 mi)
Times (UTC)
Greatest eclipse20:08:08
References
Saros 138 (27 of 70)
Catalog # (SE5000) 9377

An annular solar eclipse occurred at the Moon's descending node of orbit on Thursday, March 27, 1941, [1] with a magnitude of 0.9355. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.6 days before apogee (on March 30, 1941, at 10:50 UTC), the Moon's apparent diameter was smaller. [2]

Contents

Annularity was visible from Peru, Bolivia and Brazil. A partial eclipse was visible for parts of Oceania, Central America, the Caribbean, western South America, and Antarctica.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]

March 27, 1941 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1941 March 27 at 17:12:43.8 UTC
First Umbral External Contact1941 March 27 at 18:23:09.9 UTC
First Central Line1941 March 27 at 18:26:16.2 UTC
First Umbral Internal Contact1941 March 27 at 18:29:24.0 UTC
Equatorial Conjunction1941 March 27 at 19:49:22.3 UTC
Greatest Eclipse1941 March 27 at 20:08:07.8 UTC
Greatest Duration1941 March 27 at 20:11:10.7 UTC
Ecliptic Conjunction1941 March 27 at 20:14:07.0 UTC
Last Umbral Internal Contact1941 March 27 at 21:47:04.6 UTC
Last Central Line1941 March 27 at 21:50:13.5 UTC
Last Umbral External Contact1941 March 27 at 21:53:20.9 UTC
Last Penumbral External Contact1941 March 27 at 23:03:43.6 UTC
March 27, 1941 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.93546
Eclipse Obscuration0.87508
Gamma−0.50251
Sun Right Ascension00h24m50.5s
Sun Declination+02°41'09.8"
Sun Semi-Diameter16'01.3"
Sun Equatorial Horizontal Parallax08.8"
Moon Right Ascension00h25m23.4s
Moon Declination+02°15'13.1"
Moon Semi-Diameter14'47.6"
Moon Equatorial Horizontal Parallax0°54'17.7"
ΔT24.9 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of March 1941
March 13
Ascending node (full moon)
March 27
Descending node (new moon)
Lunar eclipse chart close-1941Mar13.png SE1941Mar27A.png
Partial lunar eclipse
Lunar Saros 112
Annular solar eclipse
Solar Saros 138

Eclipses in 1941

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 138

Inex

Triad

Solar eclipses of 1939–1942

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]

The partial solar eclipse on August 12, 1942 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1939 to 1942
Descending node Ascending node
SarosMapGammaSarosMapGamma
118 April 19, 1939
SE1939Apr19A.png
Annular
0.9388123 October 12, 1939
SE1939Oct12T.png
Total
−0.9737
128 April 7, 1940
SE1940Apr07A.png
Annular
0.219133 October 1, 1940
SE1940Oct01T.png
Total
−0.2573
138 March 27, 1941
SE1941Mar27A.png
Annular
−0.5025143 September 21, 1941
SE1941Sep21T.png
Total
0.4649
148 March 16, 1942
SE1942Mar16P.png
Partial
−1.1908153 September 10, 1942
SE1942Sep10P.png
Partial
1.2571

Saros 138

This eclipse is a part of Saros series 138, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on June 6, 1472. It contains annular eclipses from August 31, 1598 through February 18, 2482; a hybrid eclipse on March 1, 2500; and total eclipses from March 12, 2518 through April 3, 2554. The series ends at member 70 as a partial eclipse on July 11, 2716. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 23 at 8 minutes, 2 seconds on February 11, 1869, and the longest duration of totality will be produced by member 61 at 56 seconds on April 3, 2554. All eclipses in this series occur at the Moon’s descending node of orbit. [5]

Series members 20–41 occur between 1801 and 2200:
202122
SE1815Jan10A.png
January 10, 1815
SE1833Jan20A.png
January 20, 1833
SE1851Feb01A.png
February 1, 1851
232425
SE1869Feb11A.png
February 11, 1869
SE1887Feb22A.png
February 22, 1887
SE1905Mar06A.png
March 6, 1905
262728
SE1923Mar17A.png
March 17, 1923
SE1941Mar27A.png
March 27, 1941
SE1959Apr08A.png
April 8, 1959
293031
SE1977Apr18A.png
April 18, 1977
SE1995Apr29A.png
April 29, 1995
SE2013May10A.png
May 10, 2013
323334
SE2031May21A.png
May 21, 2031
SE2049May31A.png
May 31, 2049
SE2067Jun11A.png
June 11, 2067
353637
SE2085Jun22A.png
June 22, 2085
SE2103Jul04A.png
July 4, 2103
SE2121Jul14A.png
July 14, 2121
383940
SE2139Jul25A.png
July 25, 2139
SE2157Aug05A.png
August 5, 2157
SE2175Aug16A.png
August 16, 2175
41
SE2193Aug26A.png
August 26, 2193

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between March 27, 1884 and August 20, 1971
March 27–29January 14November 1–2August 20–21June 8
108110112114116
SE1884Mar27P.gif
March 27, 1884
SE1895Aug20P.gif
August 20, 1895
SE1899Jun08P.gif
June 8, 1899
118120122124126
SE1903Mar29A.png
March 29, 1903
SE1907Jan14T.png
January 14, 1907
SE1910Nov02P.png
November 2, 1910
SE1914Aug21T.png
August 21, 1914
SE1918Jun08T.png
June 8, 1918
128130132134136
SE1922Mar28A.png
March 28, 1922
SE1926Jan14T.png
January 14, 1926
SE1929Nov01A.png
November 1, 1929
SE1933Aug21A.png
August 21, 1933
SE1918Jun08T.png
June 8, 1937
138140142144146
SE1941Mar27A.png
March 27, 1941
SE1945Jan14A.png
January 14, 1945
SE1948Nov01T.png
November 1, 1948
SE1952Aug20A.png
August 20, 1952
SE1956Jun08T.png
June 8, 1956
148150152154
SE1960Mar27P.png
March 27, 1960
SE1964Jan14P.png
January 14, 1964
SE1967Nov02T.png
November 2, 1967
SE1971Aug20P.png
August 20, 1971

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1810Apr04A.gif
April 4, 1810
(Saros 126)
SE1821Mar04T.gif
March 4, 1821
(Saros 127)
SE1832Feb01A.gif
February 1, 1832
(Saros 128)
SE1842Dec31A.gif
December 31, 1842
(Saros 129)
SE1853Nov30T.png
November 30, 1853
(Saros 130)
SE1864Oct30A.gif
October 30, 1864
(Saros 131)
SE1875Sep29A.gif
September 29, 1875
(Saros 132)
SE1886Aug29T.png
August 29, 1886
(Saros 133)
SE1897Jul29A.gif
July 29, 1897
(Saros 134)
SE1908Jun28A.png
June 28, 1908
(Saros 135)
SE1919May29T.png
May 29, 1919
(Saros 136)
SE1930Apr28H.png
April 28, 1930
(Saros 137)
SE1941Mar27A.png
March 27, 1941
(Saros 138)
SE1952Feb25T.png
February 25, 1952
(Saros 139)
SE1963Jan25A.png
January 25, 1963
(Saros 140)
SE1973Dec24A.png
December 24, 1973
(Saros 141)
SE1984Nov22T.png
November 22, 1984
(Saros 142)
SE1995Oct24T.png
October 24, 1995
(Saros 143)
SE2006Sep22A.png
September 22, 2006
(Saros 144)
SE2017Aug21T.png
August 21, 2017
(Saros 145)
SE2028Jul22T.png
July 22, 2028
(Saros 146)
SE2039Jun21A.png
June 21, 2039
(Saros 147)
SE2050May20H.png
May 20, 2050
(Saros 148)
SE2061Apr20T.png
April 20, 2061
(Saros 149)
SE2072Mar19P.png
March 19, 2072
(Saros 150)
SE2083Feb16P.png
February 16, 2083
(Saros 151)
SE2094Jan16T.png
January 16, 2094
(Saros 152)
Saros153 14van70 SE2104Dec17A.jpg
December 17, 2104
(Saros 153)
SE2115Nov16A.png
November 16, 2115
(Saros 154)
SE2126Oct16T.png
October 16, 2126
(Saros 155)
Saros156 08van69 SE2137Sep15P.jpg
September 15, 2137
(Saros 156)
Saros157 06van70 SE2148Aug14P.jpg
August 14, 2148
(Saros 157)
Saros158 06van70 SE2159Jul15P.jpg
July 15, 2159
(Saros 158)
Saros159 03van70 SE2170Jun14P.jpg
June 14, 2170
(Saros 159)
Saros160 01van71 SE2181May13P.jpg
May 13, 2181
(Saros 160)
Saros161 02van72 SE2192Apr12P.jpg
April 12, 2192
(Saros 161)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1825Jun16H.png
June 16, 1825
(Saros 134)
SE1854May26A.png
May 26, 1854
(Saros 135)
SE1883May06T.png
May 6, 1883
(Saros 136)
SE1912Apr17H.png
April 17, 1912
(Saros 137)
SE1941Mar27A.png
March 27, 1941
(Saros 138)
SE1970Mar07T.png
March 7, 1970
(Saros 139)
SE1999Feb16A.png
February 16, 1999
(Saros 140)
SE2028Jan26A.png
January 26, 2028
(Saros 141)
SE2057Jan05T.png
January 5, 2057
(Saros 142)
SE2085Dec16A.png
December 16, 2085
(Saros 143)
SE2114Nov27A.png
November 27, 2114
(Saros 144)
SE2143Nov07T.png
November 7, 2143
(Saros 145)
SE2172Oct17H.png
October 17, 2172
(Saros 146)

Notes

  1. "March 27, 1941 Annular Solar Eclipse". timeanddate. Retrieved 4 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 4 August 2024.
  3. "Annular Solar Eclipse of 1941 Mar 27". EclipseWise.com. Retrieved 4 August 2024.
  4. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. "NASA - Catalog of Solar Eclipses of Saros 138". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of September 11, 2007</span> Partial solar eclipse September 11, 2007

A partial solar eclipse occurred at the Moon’s descending node of orbit on Tuesday, September 11, 2007, with a magnitude of 0.7507. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 15, 2018</span> 21st-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, February 15, 2018, with a magnitude of 0.5991. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 24, 2063</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Friday, August 24, 2063, with a magnitude of 1.075. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 30, 1984</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, May 30, 1984, with a magnitude of 0.998. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in Mexico, the United States, Azores Islands, Morocco and Algeria. It was the first annular solar eclipse visible in the US in 33 years. The Moon's apparent diameter was near the average diameter because it occurred 6.7 days after apogee and 7.8 days before perigee.

<span class="mw-page-title-main">Solar eclipse of May 31, 2049</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, May 31, 2049, with a magnitude of 0.9631. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 8, 1959</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Wednesday, April 8, 1959, with a magnitude of 0.9401. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Australia, southeastern tip of Milne Bay Province in the Territory of Papua New Guinea, British Solomon Islands, Gilbert and Ellice Islands, Tokelau, and Swains Island in American Samoa.

<span class="mw-page-title-main">Solar eclipse of March 18, 1950</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Saturday, March 18, 1950, with a magnitude of 0.962. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.8 days before apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of April 9, 2043</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Thursday, April 9, 2043, with a magnitude of 1.0095. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 27, 2095</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, November 27, 2095, with a magnitude of 0.933. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 22, 2052</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, September 22, 2052, with a magnitude of 0.9734. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 17, 2064</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, February 17, 2064, with a magnitude of 0.9262. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 11, 2067</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, June 11, 2067, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 27, 2074</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, January 27, 2074, with a magnitude of 0.9798. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 13, 2083</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, August 13, 2083, with a magnitude of 0.6146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 22, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 10, 1934</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, August 10, 1934, with a magnitude of 0.9436. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 1.4 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of December 3, 1918</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, December 3, 1918, with a magnitude of 0.9383. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring 4.3 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of January 14, 1945</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Sunday, January 14, 1945, with a magnitude of 0.997. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 8.3 days after apogee and 3.5 days before perigee.

<span class="mw-page-title-main">Solar eclipse of March 17, 1923</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Saturday, March 17, 1923, with a magnitude of 0.931. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 1.7 days before apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of December 24, 1927</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, December 24, 1927, with a magnitude of 0.549. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References