Solar eclipse of December 25, 1954 | |
---|---|
Type of eclipse | |
Nature | Annular |
Gamma | −0.2576 |
Magnitude | 0.9323 |
Maximum eclipse | |
Duration | 459 s (7 min 39 s) |
Coordinates | 38°24′S68°12′E / 38.4°S 68.2°E |
Max. width of band | 262 km (163 mi) |
Times (UTC) | |
Greatest eclipse | 7:36:42 |
References | |
Saros | 131 (47 of 70) |
Catalog # (SE5000) | 9409 |
An annular solar eclipse occurred at the Moon's ascending node of orbit on Saturday, December 25, 1954 (also known as "The Christmas 1954 solar eclipse"), [1] with a magnitude of 0.9323. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide. Occurring about 4.9 days after apogee (on December 21, 1954, at 8:50 UTC), the Moon's apparent diameter was smaller. [2]
Annularity was visible from the southwestern tip of South West Africa (Now Namibia), Union of South Africa (Now South Africa), Ashmore and Cartier Islands except Cartier Island, Indonesia and Portuguese Timor (Now East Timor). A partial eclipse was visible for parts of Southern Africa, Antarctica, Southeast Asia, and Australia.
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 1954 December 25 at 04:35:22.0 UTC |
First Umbral External Contact | 1954 December 25 at 05:40:42.2 UTC |
First Central Line | 1954 December 25 at 05:43:40.3 UTC |
First Umbral Internal Contact | 1954 December 25 at 05:46:38.6 UTC |
First Penumbral Internal Contact | 1954 December 25 at 06:56:43.3 UTC |
Greatest Duration | 1954 December 25 at 07:29:49.2 UTC |
Equatorial Conjunction | 1954 December 25 at 07:32:58.2 UTC |
Ecliptic Conjunction | 1954 December 25 at 07:33:39.3 UTC |
Greatest Eclipse | 1954 December 25 at 07:36:42.4 UTC |
Last Penumbral Internal Contact | 1954 December 25 at 08:16:48.3 UTC |
Last Umbral Internal Contact | 1954 December 25 at 09:26:50.4 UTC |
Last Central Line | 1954 December 25 at 09:29:46.5 UTC |
Last Umbral External Contact | 1954 December 25 at 09:32:42.2 UTC |
Last Penumbral External Contact | 1954 December 25 at 10:37:59.4 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.93233 |
Eclipse Obscuration | 0.86925 |
Gamma | −0.25762 |
Sun Right Ascension | 18h12m59.7s |
Sun Declination | -23°24'41.6" |
Sun Semi-Diameter | 16'15.7" |
Sun Equatorial Horizontal Parallax | 08.9" |
Moon Right Ascension | 18h13m07.2s |
Moon Declination | -23°38'40.4" |
Moon Semi-Diameter | 14'56.4" |
Moon Equatorial Horizontal Parallax | 0°54'49.7" |
ΔT | 31.1 s |
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
December 25 Ascending node (new moon) | January 8 Descending node (full moon) |
---|---|
Annular solar eclipse Solar Saros 131 | Penumbral lunar eclipse Lunar Saros 143 |
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]
The partial solar eclipses on February 14, 1953 and August 9, 1953 occur in the previous lunar year eclipse set.
Solar eclipse series sets from 1953 to 1956 | ||||||
---|---|---|---|---|---|---|
Descending node | Ascending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
116 | July 11, 1953 Partial | 1.4388 | 121 | January 5, 1954 Annular | −0.9296 | |
126 | June 30, 1954 Total | 0.6135 | 131 | December 25, 1954 Annular | −0.2576 | |
136 | June 20, 1955 Total | −0.1528 | 141 | December 14, 1955 Annular | 0.4266 | |
146 | June 8, 1956 Total | −0.8934 | 151 | December 2, 1956 Partial | 1.0923 |
This eclipse is a part of Saros series 131, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on August 1, 1125. It contains total eclipses from March 27, 1522 through May 30, 1612; hybrid eclipses from June 10, 1630 through July 24, 1702; and annular eclipses from August 4, 1720 through June 18, 2243. The series ends at member 70 as a partial eclipse on September 2, 2369. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 28 at 58 seconds on May 30, 1612, and the longest duration of annularity was produced by member 50 at 7 minutes, 54 seconds on January 26, 2009. All eclipses in this series occur at the Moon’s ascending node of orbit. [5]
Series members 39–60 occur between 1801 and 2200: | ||
---|---|---|
39 | 40 | 41 |
September 28, 1810 | October 9, 1828 | October 20, 1846 |
42 | 43 | 44 |
October 30, 1864 | November 10, 1882 | November 22, 1900 |
45 | 46 | 47 |
December 3, 1918 | December 13, 1936 | December 25, 1954 |
48 | 49 | 50 |
January 4, 1973 | January 15, 1991 | January 26, 2009 |
51 | 52 | 53 |
February 6, 2027 | February 16, 2045 | February 28, 2063 |
54 | 55 | 56 |
March 10, 2081 | March 21, 2099 | April 2, 2117 |
57 | 58 | 59 |
April 13, 2135 | April 23, 2153 | May 5, 2171 |
60 | ||
May 15, 2189 |
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
22 eclipse events between December 24, 1916 and July 31, 2000 | ||||
---|---|---|---|---|
December 24–25 | October 12 | July 31–August 1 | May 19–20 | March 7 |
111 | 113 | 115 | 117 | 119 |
December 24, 1916 | July 31, 1924 | May 19, 1928 | March 7, 1932 | |
121 | 123 | 125 | 127 | 129 |
December 25, 1935 | October 12, 1939 | August 1, 1943 | May 20, 1947 | March 7, 1951 |
131 | 133 | 135 | 137 | 139 |
December 25, 1954 | October 12, 1958 | July 31, 1962 | May 20, 1966 | March 7, 1970 |
141 | 143 | 145 | 147 | 149 |
December 24, 1973 | October 12, 1977 | July 31, 1981 | May 19, 1985 | March 7, 1989 |
151 | 153 | 155 | ||
December 24, 1992 | October 12, 1996 | July 31, 2000 |
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
March 4, 1802 (Saros 117) | February 1, 1813 (Saros 118) | January 1, 1824 (Saros 119) | November 30, 1834 (Saros 120) | October 30, 1845 (Saros 121) |
September 29, 1856 (Saros 122) | August 29, 1867 (Saros 123) | July 29, 1878 (Saros 124) | June 28, 1889 (Saros 125) | May 28, 1900 (Saros 126) |
April 28, 1911 (Saros 127) | March 28, 1922 (Saros 128) | February 24, 1933 (Saros 129) | January 25, 1944 (Saros 130) | December 25, 1954 (Saros 131) |
November 23, 1965 (Saros 132) | October 23, 1976 (Saros 133) | September 23, 1987 (Saros 134) | August 22, 1998 (Saros 135) | July 22, 2009 (Saros 136) |
June 21, 2020 (Saros 137) | May 21, 2031 (Saros 138) | April 20, 2042 (Saros 139) | March 20, 2053 (Saros 140) | February 17, 2064 (Saros 141) |
January 16, 2075 (Saros 142) | December 16, 2085 (Saros 143) | November 15, 2096 (Saros 144) | October 16, 2107 (Saros 145) | September 15, 2118 (Saros 146) |
August 15, 2129 (Saros 147) | July 14, 2140 (Saros 148) | June 14, 2151 (Saros 149) | May 14, 2162 (Saros 150) | April 12, 2173 (Saros 151) |
March 12, 2184 (Saros 152) | February 10, 2195 (Saros 153) |
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
April 4, 1810 (Saros 126) | March 15, 1839 (Saros 127) | February 23, 1868 (Saros 128) |
February 1, 1897 (Saros 129) | January 14, 1926 (Saros 130) | December 25, 1954 (Saros 131) |
December 4, 1983 (Saros 132) | November 13, 2012 (Saros 133) | October 25, 2041 (Saros 134) |
October 4, 2070 (Saros 135) | September 14, 2099 (Saros 136) | August 25, 2128 (Saros 137) |
August 5, 2157 (Saros 138) | July 16, 2186 (Saros 139) |
An annular solar eclipse occurred at the Moon's descending node of orbit on Sunday, December 4, 1983, with a magnitude of 0.9666. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in Cape Verde, Annobón Island of Equatorial Guinea, Gabon, the People's Republic of Congo, Zaire, northern Uganda, southern Sudan, northwestern Kenya, Ethiopia and Somalia. The Sun's altitude was 66°. Occurring 6.5 days before apogee, the Moon's apparent diameter was near the average diameter.
An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, May 31, 2049, with a magnitude of 0.9631. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Monday, December 24, 1973, with a magnitude of 0.9174. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from southern Mexico, southwestern Nicaragua, Costa Rica including the capital city San José, Panama, Colombia including the capital city Bogotá, southern Venezuela, Brazil, southern Guyana, southern Dutch Guiana, southern French Guiana, Portuguese Cape Verde including the capital city Praia, Mauritania including the capital city Nouakchott, Spanish Sahara, Mali, and Algeria.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, June 21, 2039, with a magnitude of 0.9454. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. This eclipse will start only a few hours after the northern solstice and most of the path will go across areas with midnight sun. For mainland Norway, Sweden and Belarus, it will be the first central solar eclipse since June 1954.
An annular solar eclipse occurred at the Moon's descending node of orbit on Sunday, September 11, 1988, with a magnitude of 0.9377. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in southeastern Somalia, the Indian Ocean and Macquarie Island of Australia.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Sunday, January 16, 1972, with a magnitude of 0.9692. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, August 11, 1961, with a magnitude of 0.9375. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. A small annular eclipse covered only 94% of the Sun in a very broad path, 499 km wide at maximum, and lasted 6 minutes and 35 seconds.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, January 5, 1954, with a magnitude of 0.972. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 7.5 days after apogee and 5.3 days before perigee.
An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, November 27, 2095, with a magnitude of 0.933. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, September 22, 2052, with a magnitude of 0.9734. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, October 13, 2061, with a magnitude of 0.9469. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, February 17, 2064, with a magnitude of 0.9262. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, June 11, 2067, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, December 16, 2085, with a magnitude of 0.9971. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. If a moon with same apparent diameter in this eclipse near the Aphelion, it will be Total Solar Eclipse, but in this time of the year, just 2 weeks and 4 days before perihelion, it is an Annular Solar Eclipse.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, July 13, 2075, with a magnitude of 0.9467. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide.
An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, January 27, 2074, with a magnitude of 0.9798. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, October 24, 2079, with a magnitude of 0.9484. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, February 27, 2082, with a magnitude of 0.9298. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, November 4, 2097, with a magnitude of 0.9494. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.