Solar eclipse of August 11, 1961 | |
---|---|
Type of eclipse | |
Nature | Annular |
Gamma | −0.8859 |
Magnitude | 0.9375 |
Maximum eclipse | |
Duration | 395 s (6 min 35 s) |
Coordinates | 45°48′S4°00′E / 45.8°S 4°E |
Max. width of band | 499 km (310 mi) |
Times (UTC) | |
Greatest eclipse | 10:46:47 |
References | |
Saros | 125 (51 of 73) |
Catalog # (SE5000) | 9423 |
An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, August 11, 1961, [1] with a magnitude of 0.9375. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 7 hours after apogee (on August 11, 1961, at 17:50 UTC), the Moon's apparent diameter was smaller. [2]
Annularity was visible from a part of Antarctica. A partial eclipse was visible for parts of eastern South America, Southern Africa, and Antarctica.
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 1961 August 11 at 08:13:26.2 UTC |
First Umbral External Contact | 1961 August 11 at 09:47:06.3 UTC |
First Central Line | 1961 August 11 at 09:52:11.0 UTC |
First Umbral Internal Contact | 1961 August 11 at 09:57:40.3 UTC |
Ecliptic Conjunction | 1961 August 11 at 10:36:17.9 UTC |
Greatest Duration | 1961 August 11 at 10:45:02.0 UTC |
Greatest Eclipse | 1961 August 11 at 10:46:46.9 UTC |
Equatorial Conjunction | 1961 August 11 at 11:09:44.1 UTC |
Last Umbral Internal Contact | 1961 August 11 at 11:35:36.6 UTC |
Last Central Line | 1961 August 11 at 11:41:06.3 UTC |
Last Umbral External Contact | 1961 August 11 at 11:46:11.6 UTC |
Last Penumbral External Contact | 1961 August 11 at 13:19:57.6 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.93753 |
Eclipse Obscuration | 0.87897 |
Gamma | −0.88594 |
Sun Right Ascension | 09h23m48.0s |
Sun Declination | +15°16'44.3" |
Sun Semi-Diameter | 15'46.9" |
Sun Equatorial Horizontal Parallax | 08.7" |
Moon Right Ascension | 09h23m06.0s |
Moon Declination | +14°30'09.9" |
Moon Semi-Diameter | 14'41.9" |
Moon Equatorial Horizontal Parallax | 0°53'56.8" |
ΔT | 33.8 s |
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
August 11 Ascending node (new moon) | August 26 Descending node (full moon) |
---|---|
Annular solar eclipse Solar Saros 125 | Partial lunar eclipse Lunar Saros 137 |
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]
The partial solar eclipses on June 10, 1964 and December 4, 1964 occur in the next lunar year eclipse set.
Solar eclipse series sets from 1961 to 1964 | ||||||
---|---|---|---|---|---|---|
Descending node | Ascending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
120 | February 15, 1961 Total | 0.883 | 125 | August 11, 1961 Annular | −0.8859 | |
130 | February 5, 1962 Total | 0.2107 | 135 | July 31, 1962 Annular | −0.113 | |
140 | January 25, 1963 Annular | −0.4898 | 145 | July 20, 1963 Total | 0.6571 | |
150 | January 14, 1964 Partial | −1.2354 | 155 | July 9, 1964 Partial | 1.3623 |
This eclipse is a part of Saros series 125, repeating every 18 years, 11 days, and containing 73 events. The series started with a partial solar eclipse on February 4, 1060. It contains total eclipses from June 13, 1276 through July 16, 1330; hybrid eclipses on July 26, 1348 and August 7, 1366; and annular eclipses from August 17, 1384 through August 22, 1979. The series ends at member 73 as a partial eclipse on April 9, 2358. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 14 at 1 minutes, 11 seconds on June 25, 1294, and the longest duration of annularity was produced by member 48 at 7 minutes, 23 seconds on July 10, 1907. All eclipses in this series occur at the Moon’s ascending node of orbit. [5]
Series members 43–64 occur between 1801 and 2200: | ||
---|---|---|
43 | 44 | 45 |
May 16, 1817 | May 27, 1835 | June 6, 1853 |
46 | 47 | 48 |
June 18, 1871 | June 28, 1889 | July 10, 1907 |
49 | 50 | 51 |
July 20, 1925 | August 1, 1943 | August 11, 1961 |
52 | 53 | 54 |
August 22, 1979 | September 2, 1997 | September 13, 2015 |
55 | 56 | 57 |
September 23, 2033 | October 4, 2051 | October 15, 2069 |
58 | 59 | 60 |
October 26, 2087 | November 6, 2105 | November 18, 2123 |
61 | 62 | 63 |
November 28, 2141 | December 9, 2159 | December 20, 2177 |
64 | ||
December 31, 2195 |
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
22 eclipse events between January 5, 1935 and August 11, 2018 | ||||
---|---|---|---|---|
January 4–5 | October 23–24 | August 10–12 | May 30–31 | March 18–19 |
111 | 113 | 115 | 117 | 119 |
January 5, 1935 | August 12, 1942 | May 30, 1946 | March 18, 1950 | |
121 | 123 | 125 | 127 | 129 |
January 5, 1954 | October 23, 1957 | August 11, 1961 | May 30, 1965 | March 18, 1969 |
131 | 133 | 135 | 137 | 139 |
January 4, 1973 | October 23, 1976 | August 10, 1980 | May 30, 1984 | March 18, 1988 |
141 | 143 | 145 | 147 | 149 |
January 4, 1992 | October 24, 1995 | August 11, 1999 | May 31, 2003 | March 19, 2007 |
151 | 153 | 155 | ||
January 4, 2011 | October 23, 2014 | August 11, 2018 |
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
October 19, 1808 (Saros 111) | September 19, 1819 (Saros 112) | August 18, 1830 (Saros 113) | July 18, 1841 (Saros 114) | June 17, 1852 (Saros 115) |
May 17, 1863 (Saros 116) | April 16, 1874 (Saros 117) | March 16, 1885 (Saros 118) | February 13, 1896 (Saros 119) | January 14, 1907 (Saros 120) |
December 14, 1917 (Saros 121) | November 12, 1928 (Saros 122) | October 12, 1939 (Saros 123) | September 12, 1950 (Saros 124) | August 11, 1961 (Saros 125) |
July 10, 1972 (Saros 126) | June 11, 1983 (Saros 127) | May 10, 1994 (Saros 128) | April 8, 2005 (Saros 129) | March 9, 2016 (Saros 130) |
February 6, 2027 (Saros 131) | January 5, 2038 (Saros 132) | December 5, 2048 (Saros 133) | November 5, 2059 (Saros 134) | October 4, 2070 (Saros 135) |
September 3, 2081 (Saros 136) | August 3, 2092 (Saros 137) | July 4, 2103 (Saros 138) | June 3, 2114 (Saros 139) | May 3, 2125 (Saros 140) |
April 1, 2136 (Saros 141) | March 2, 2147 (Saros 142) | January 30, 2158 (Saros 143) | December 29, 2168 (Saros 144) | November 28, 2179 (Saros 145) |
October 29, 2190 (Saros 146) |
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
November 19, 1816 (Saros 120) | October 30, 1845 (Saros 121) | October 10, 1874 (Saros 122) |
September 21, 1903 (Saros 123) | August 31, 1932 (Saros 124) | August 11, 1961 (Saros 125) |
July 22, 1990 (Saros 126) | July 2, 2019 (Saros 127) | June 11, 2048 (Saros 128) |
May 22, 2077 (Saros 129) | May 3, 2106 (Saros 130) | April 13, 2135 (Saros 131) |
March 23, 2164 (Saros 132) | March 3, 2193 (Saros 133) |
An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, January 26, 1990, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring 7.1 days after apogee, the Moon's apparent diameter was smaller.
A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, November 3, 2032, with a magnitude of 0.8554. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
An annular solar eclipse occurred at the Moon's descending node of orbit on Sunday, September 11, 1988, with a magnitude of 0.9377. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 12.5 hours after apogee, the Moon's apparent diameter was smaller.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, August 22, 1979, with a magnitude of 0.9329. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 15 hours before apogee, the Moon's apparent diameter was smaller.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Sunday, January 16, 1972, with a magnitude of 0.9692. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 7.3 days after apogee, the Moon's apparent diameter was smaller.
An annular solar eclipse will occur at the Moon's ascending node of orbit between Sunday, September 22 and Monday, September 23, 2052, with a magnitude of 0.9734. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.9 days before apogee, the Moon's apparent diameter will be smaller.
An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, March 20, 2053, with a magnitude of 0.9919. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.6 days before perigee, the Moon's apparent diameter will be larger.
An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, October 24, 2060, with a magnitude of 0.9277. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 18 hours before apogee, the Moon's apparent diameter will be smaller.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, February 28, 2063, with a magnitude of 0.9293. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.7 days after apogee, the Moon's apparent diameter will be smaller.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, February 17, 2064, with a magnitude of 0.9262. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.5 days before apogee, the Moon's apparent diameter will be smaller.
An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, June 11, 2067, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.3 days before apogee, the Moon's apparent diameter will be smaller.
An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, November 4, 2078, with a magnitude of 0.9255. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 22 hours before apogee, the Moon's apparent diameter will be smaller.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, February 27, 2082, with a magnitude of 0.9298. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.7 days before apogee, the Moon's apparent diameter will be smaller.
An annular solar eclipse will occur at the Moon's ascending node of orbit between Wednesday, March 10 and Thursday, March 11, 2100, with a magnitude of 0.9338. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.9 days before apogee, the Moon's apparent diameter will be smaller.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Thursday, October 14, 2088, with a magnitude of 0.9727. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 6.3 days before apogee, the Moon's apparent diameter will be smaller.
An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.6 days before apogee, the Moon's apparent diameter will be smaller.
An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, August 10, 1934, with a magnitude of 0.9436. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 1.4 days after apogee, the Moon's apparent diameter was smaller.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, June 28, 1889, with a magnitude of 0.9471. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 1.1 days after apogee, the Moon's apparent diameter was smaller.
An annular solar eclipse occurred at the Moon's descending node of orbit on Thursday, March 27, 1941, with a magnitude of 0.9355. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.6 days before apogee, the Moon's apparent diameter was smaller.
A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, December 24, 1927, with a magnitude of 0.549. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.