Solar eclipse of January 23, 1860 | |
---|---|
Type of eclipse | |
Nature | Annular |
Gamma | −0.8969 |
Magnitude | 0.9168 |
Maximum eclipse | |
Duration | 367 s (6 min 7 s) |
Coordinates | 71°48′S117°12′W / 71.8°S 117.2°W |
Max. width of band | 719 km (447 mi) |
Times (UTC) | |
Greatest eclipse | 0:27:31 |
References | |
Saros | 119 (57 of 71) |
Catalog # (SE5000) | 9187 |
An annular solar eclipse occurred at the Moon's ascending node of orbit between Sunday, January 22 and Monday, January 23, 1860, with a magnitude of 0.9168. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.7 days before apogee (on January 25, 1860, at 17:40 UTC), the Moon's apparent diameter was smaller. [1]
The path of annularity was visible from parts of Antarctica. A partial solar eclipse was also visible for parts of New Zealand, Antarctica, the southern tip of South America, and eastern Oceania.
The eclipse was visible in much of the South Island and the southernmost portion of North Island around Wellington in New Zealand, it was also visible in all of Antarctica (much of the areas had a 24-hour daylight), South America's Patagonia and Oceanian islands such as Macquarrie, Chatham, Antipodes, Tahiti and Tuamotu [2] It was part of solar saros 119. [3]
On the other side as the Moon from the Earth headed towards the left at New Zealand, as the umbral path was outside the South Pole and over the Prime Meridian to the Peninsula, the Moon from the Earth was seen as it was going on bottom, then on the right and on top in the peninsular portion though the Earth rotates to the east as it was north of the South Pole at the Prime Meridian, the rest of the world saw the Moon from the Earth headed towards the left.
The umbral portion was 719 km (449 mi) long and started in Northern Antarctica from east of the Prime Meridian to the 40th meridian east all the way to the west of its peninsula and was shown up to 91% obscuration of the sun. The greatest occurred within the Pacific in Peninsular Antarctica at 71.8 N & 117.2 W at 0:27 UTC (4:27 PM local time on January 22) and lasted for over 6 minutes. [2]
The eclipse showed up to 50% obscuration off the coast of Antarctica in the area separating the Indian and the Pacific Oceans.
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [4]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 1860 January 22 at 21:54:55.8 UTC |
First Umbral External Contact | 1860 January 22 at 23:29:05.6 UTC |
First Central Line | 1860 January 22 at 23:35:59.6 UTC |
First Umbral Internal Contact | 1860 January 22 at 23:43:44.7 UTC |
Equatorial Conjunction | 1860 January 22 at 23:51:32.6 UTC |
Ecliptic Conjunction | 1860 January 23 at 00:16:56.5 UTC |
Greatest Duration | 1860 January 23 at 00:26:14.5 UTC |
Greatest Eclipse | 1860 January 23 at 00:27:31.1 UTC |
Last Umbral Internal Contact | 1860 January 23 at 01:11:39.9 UTC |
Last Central Line | 1860 January 23 at 01:19:25.9 UTC |
Last Umbral External Contact | 1860 January 23 at 01:26:20.8 UTC |
Last Penumbral External Contact | 1860 January 23 at 03:00:24.2 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.91681 |
Eclipse Obscuration | 0.84054 |
Gamma | −0.89691 |
Sun Right Ascension | 20h18m13.0s |
Sun Declination | -19°40'02.4" |
Sun Semi-Diameter | 16'14.8" |
Sun Equatorial Horizontal Parallax | 08.9" |
Moon Right Ascension | 20h19m19.7s |
Moon Declination | -20°26'02.5" |
Moon Semi-Diameter | 14'48.2" |
Moon Equatorial Horizontal Parallax | 0°54'19.6" |
ΔT | 7.5 s |
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
January 23 Ascending node (new moon) | February 7 Descending node (full moon) |
---|---|
Annular solar eclipse Solar Saros 119 | Partial lunar eclipse Lunar Saros 131 |
This eclipse is a member of a semester series . An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [5]
The partial solar eclipses on March 4, 1859 and August 28, 1859 occur in the previous lunar year eclipse set, and the partial solar eclipse on November 21, 1862 occurs in the next lunar year eclipse set.
Solar eclipse series sets from 1859 to 1862 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
109 | February 3, 1859 Partial | −1.5659 | 114 | July 29, 1859 Partial | 1.2598 | |
119 | January 23, 1860 Annular | −0.8969 | 124 | July 18, 1860 Total | 0.5487 | |
129 | January 11, 1861 Annular | −0.1766 | 134 | July 8, 1861 Annular | −0.2231 | |
139 | December 31, 1861 Total | 0.5187 | 144 | June 27, 1862 Partial | −1.0252 | |
149 | December 21, 1862 Partial | 1.1633 |
This eclipse is a part of Saros series 119, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on May 15, 850 AD. It contains total eclipses on August 9, 994 AD and August 20, 1012; a hybrid eclipse on August 31, 1030; and annular eclipses from September 10, 1048 through March 18, 1950. The series ends at member 71 as a partial eclipse on June 24, 2112. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 10 at 32 seconds on August 20, 1012, and the longest duration of annularity was produced by member 44 at 7 minutes, 37 seconds on September 1, 1625. All eclipses in this series occur at the Moon’s ascending node of orbit. [6]
Series members 54–71 occur between 1801 and 2112: | ||
---|---|---|
54 | 55 | 56 |
December 21, 1805 | January 1, 1824 | January 11, 1842 |
57 | 58 | 59 |
January 23, 1860 | February 2, 1878 | February 13, 1896 |
60 | 61 | 62 |
February 25, 1914 | March 7, 1932 | March 18, 1950 |
63 | 64 | 65 |
March 28, 1968 | April 9, 1986 | April 19, 2004 |
66 | 67 | 68 |
April 30, 2022 | May 11, 2040 | May 22, 2058 |
69 | 70 | 71 |
June 1, 2076 | June 13, 2094 | June 24, 2112 |
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
25 eclipse events between April 5, 1837 and June 17, 1928 | ||||
---|---|---|---|---|
April 5–6 | January 22–23 | November 10–11 | August 28–30 | June 17–18 |
107 | 109 | 111 | 113 | 115 |
April 5, 1837 | January 22, 1841 | November 10, 1844 | August 28, 1848 | June 17, 1852 |
117 | 119 | 121 | 123 | 125 |
April 5, 1856 | January 23, 1860 | November 11, 1863 | August 29, 1867 | June 18, 1871 |
127 | 129 | 131 | 133 | 135 |
April 6, 1875 | January 22, 1879 | November 10, 1882 | August 29, 1886 | June 17, 1890 |
137 | 139 | 141 | 143 | 145 |
April 6, 1894 | January 22, 1898 | November 11, 1901 | August 30, 1905 | June 17, 1909 |
147 | 149 | 151 | 153 | 155 |
April 6, 1913 | January 23, 1917 | November 10, 1920 | August 30, 1924 | June 17, 1928 |
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
June 26, 1805 (Saros 114) | May 27, 1816 (Saros 115) | April 26, 1827 (Saros 116) | March 25, 1838 (Saros 117) | February 23, 1849 (Saros 118) |
January 23, 1860 (Saros 119) | December 22, 1870 (Saros 120) | November 21, 1881 (Saros 121) | October 20, 1892 (Saros 122) | September 21, 1903 (Saros 123) |
August 21, 1914 (Saros 124) | July 20, 1925 (Saros 125) | June 19, 1936 (Saros 126) | May 20, 1947 (Saros 127) | April 19, 1958 (Saros 128) |
March 18, 1969 (Saros 129) | February 16, 1980 (Saros 130) | January 15, 1991 (Saros 131) | December 14, 2001 (Saros 132) | November 13, 2012 (Saros 133) |
October 14, 2023 (Saros 134) | September 12, 2034 (Saros 135) | August 12, 2045 (Saros 136) | July 12, 2056 (Saros 137) | June 11, 2067 (Saros 138) |
May 11, 2078 (Saros 139) | April 10, 2089 (Saros 140) | March 10, 2100 (Saros 141) | February 8, 2111 (Saros 142) | January 8, 2122 (Saros 143) |
December 7, 2132 (Saros 144) | November 7, 2143 (Saros 145) | October 7, 2154 (Saros 146) | September 5, 2165 (Saros 147) | August 4, 2176 (Saros 148) |
July 6, 2187 (Saros 149) | June 4, 2198 (Saros 150) |
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
March 4, 1802 (Saros 117) | February 12, 1831 (Saros 118) | January 23, 1860 (Saros 119) |
January 1, 1889 (Saros 120) | December 14, 1917 (Saros 121) | November 23, 1946 (Saros 122) |
November 3, 1975 (Saros 123) | October 14, 2004 (Saros 124) | September 23, 2033 (Saros 125) |
September 3, 2062 (Saros 126) | August 15, 2091 (Saros 127) | July 25, 2120 (Saros 128) |
July 5, 2149 (Saros 129) | June 16, 2178 (Saros 130) |
An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, January 26, 1990, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring 7.1 days after apogee, the Moon's apparent diameter was smaller.
An annular solar eclipse will occur at the Moon’s ascending node of orbit on Tuesday, February 17, 2026, with a magnitude of 0.963. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter will be near the average diameter because it will occur 6.8 days after apogee and 7.5 days before perigee.
A partial solar eclipse will occur at the Moon's descending node of orbit on Wednesday, February 27, 2036, with a magnitude of 0.6286. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, August 22, 1979, with a magnitude of 0.9329. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only about 15 hours before apogee, the Moon's apparent diameter was smaller.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Sunday, January 16, 1972, with a magnitude of 0.9692. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 7.3 days after apogee, the Moon's apparent diameter was smaller.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, August 11, 1961, with a magnitude of 0.9375. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only about 7 hours after apogee, the Moon's apparent diameter was smaller.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, January 5, 1954, with a magnitude of 0.972. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 7.5 days after apogee and 5.3 days before perigee.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Saturday, March 18, 1950, with a magnitude of 0.962. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.8 days before apogee, the Moon's apparent diameter was smaller.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, February 28, 2044, with a magnitude of 0.96. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 6.7 days after apogee, the Moon's apparent diameter will be smaller.
A total solar eclipse will occur at the Moon's descending node of orbit between Tuesday, December 25 and Wednesday, December 26, 2057, with a magnitude of 1.0348. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 6.5 hours before perigee, the Moon's apparent diameter will be larger.
An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, October 13, 2061, with a magnitude of 0.9469. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 1.1 days before apogee, the Moon's apparent diameter will be smaller.
An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, November 4, 2078, with a magnitude of 0.9255. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only about 22 hours before apogee, the Moon's apparent diameter will be smaller.
An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, October 24, 2079, with a magnitude of 0.9484. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.25 days before apogee, the Moon's apparent diameter will be smaller.
An annular solar eclipse will occur at the Moon's descending node of orbit between Sunday, November 3 and Monday, November 4, 2097, with a magnitude of 0.9494. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.4 days before apogee, the Moon's apparent diameter will be smaller.
An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, August 10, 1934, with a magnitude of 0.9436. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 1.4 days after apogee, the Moon's apparent diameter was smaller.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, December 25, 1935, with a magnitude of 0.9752. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 7.7 days after apogee and 4.8 days before perigee.
An annular solar eclipse occurred at the Moon's descending node of orbit on Thursday, March 27, 1941, with a magnitude of 0.9355. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.6 days before apogee, the Moon's apparent diameter was smaller.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Monday, March 7, 1932, with a magnitude of 0.9277. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.6 days before apogee, the Moon's apparent diameter was smaller.
A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, December 24, 1927, with a magnitude of 0.549. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, December 14, 1917, with a magnitude of 0.9791. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring 4.6 days before apogee, the Moon's apparent diameter was smaller.