Solar eclipse of June 8, 1956

Last updated
Solar eclipse of June 8, 1956
SE1956Jun08T.png
Map
Type of eclipse
NatureTotal
Gamma −0.8934
Magnitude 1.0581
Maximum eclipse
Duration285 s (4 min 45 s)
Coordinates 40°48′S140°42′W / 40.8°S 140.7°W / -40.8; -140.7
Max. width of band429 km (267 mi)
Times (UTC)
Greatest eclipse21:20:39
References
Saros 146 (24 of 76)
Catalog # (SE5000) 9412

A total solar eclipse occurred at the Moon's descending node of orbit between Friday, June 8 and Saturday, June 9, 1956, with a magnitude of 1.0581. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. It began near sunrise over New Zealand on June 9 (Saturday), and ended west of South America on June 8 (Friday).

Contents

Eclipse details

Eclipses in 1956

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 146

Inex

Triad

Solar eclipses of 1953–1956

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [1]

The partial solar eclipses on February 14, 1953 and August 9, 1953 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 1953 to 1956
Descending node Ascending node
SarosMapGammaSarosMapGamma
116 July 11, 1953
SE1953Jul11P.png
Partial
1.4388121 January 5, 1954
SE1954Jan05A.png
Annular
−0.9296
126 June 30, 1954
SE1954Jun30T.png
Total
0.6135131 December 25, 1954
SE1954Dec25A.png
Annular
−0.2576
136 June 20, 1955
SE1955Jun20T.png
Total
−0.1528141 December 14, 1955
SE1955Dec14A.png
Annular
0.4266
146 June 8, 1956
SE1956Jun08T.png
Total
−0.8934151 December 2, 1956
SE1956Dec02P.png
Partial
1.0923

Saros 146

This eclipse is a part of Saros series 146, repeating every 18 years, 11 days, and containing 76 events. The series started with a partial solar eclipse on September 19, 1541. It contains total eclipses from May 29, 1938 through October 7, 2154; hybrid eclipses from October 17, 2172 through November 20, 2226; and annular eclipses from November 30, 2244 through August 10, 2659. The series ends at member 76 as a partial eclipse on December 29, 2893. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 26 at 5 minutes, 21 seconds on June 30, 1992, and the longest duration of annularity will be produced by member 63 at 3 minutes, 30 seconds on August 10, 2659. All eclipses in this series occur at the Moon’s descending node of orbit. [2]

Series members 16–37 occur between 1801 and 2200:
161718
SE1801Apr13P.png
March 13, 1812
SE1819Apr24P.png
March 24, 1830
SE1837May04P.png
April 3, 1848
192021
SE1855May16P.png
April 15, 1866
SE1873May26P.png
April 25, 1884
SE1902May07P.png
May 7, 1902
222324
SE1920May18P.png
May 18, 1920
SE1938May29T.png
May 29, 1938
SE1956Jun08T.png
June 8, 1956
252627
SE1974Jun20T.png
June 20, 1974
SE1992Jun30T.png
June 30, 1992
SE2010Jul11T.png
July 11, 2010
282930
SE2028Jul22T.png
July 22, 2028
SE2046Aug02T.png
August 2, 2046
SE2064Aug12T.png
August 12, 2064
313233
SE2082Aug24T.png
August 24, 2082
SE2100Sep04T.png
September 4, 2100
SE2118Sep15T.png
September 15, 2118
343536
SE2136Sep26T.png
September 26, 2136
SE2154Oct07T.png
October 7, 2154
SE2172Oct17H.png
October 17, 2172
37
SE2190Oct29H.png
October 29, 2190

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between March 27, 1884 and August 20, 1971
March 27–29January 14November 1–2August 20–21June 8
108110112114116
SE1884Mar27P.gif
March 27, 1884
SE1895Aug20P.gif
August 20, 1895
SE1899Jun08P.gif
June 8, 1899
118120122124126
SE1903Mar29A.png
March 29, 1903
SE1907Jan14T.png
January 14, 1907
SE1910Nov02P.png
November 2, 1910
SE1914Aug21T.png
August 21, 1914
SE1918Jun08T.png
June 8, 1918
128130132134136
SE1922Mar28A.png
March 28, 1922
SE1926Jan14T.png
January 14, 1926
SE1929Nov01A.png
November 1, 1929
SE1933Aug21A.png
August 21, 1933
SE1918Jun08T.png
June 8, 1937
138140142144146
SE1941Mar27A.png
March 27, 1941
SE1945Jan14A.png
January 14, 1945
SE1948Nov01T.png
November 1, 1948
SE1952Aug20A.png
August 20, 1952
SE1956Jun08T.png
June 8, 1956
148150152154
SE1960Mar27P.png
March 27, 1960
SE1964Jan14P.png
January 14, 1964
SE1967Nov02T.png
November 2, 1967
SE1971Aug20P.png
August 20, 1971

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2087
SE1803Aug17A.png
August 17, 1803
(Saros 132)
SE1814Jul17T.png
July 17, 1814
(Saros 133)
SE1825Jun16H.png
June 16, 1825
(Saros 134)
SE1836May15A.png
May 15, 1836
(Saros 135)
SE1847Apr15T.png
April 15, 1847
(Saros 136)
SE1858Mar15A.png
March 15, 1858
(Saros 137)
SE1869Feb11A.png
February 11, 1869
(Saros 138)
SE1880Jan11T.png
January 11, 1880
(Saros 139)
SE1890Dec12H.png
December 12, 1890
(Saros 140)
SE1901Nov11A.png
November 11, 1901
(Saros 141)
SE1912Oct10T.png
October 10, 1912
(Saros 142)
SE1923Sep10T.png
September 10, 1923
(Saros 143)
SE1934Aug10A.png
August 10, 1934
(Saros 144)
SE1945Jul09T.png
July 9, 1945
(Saros 145)
SE1956Jun08T.png
June 8, 1956
(Saros 146)
SE1967May09P.png
May 9, 1967
(Saros 147)
SE1978Apr07P.png
April 7, 1978
(Saros 148)
SE1989Mar07P.png
March 7, 1989
(Saros 149)
SE2000Feb05P.png
February 5, 2000
(Saros 150)
SE2011Jan04P.png
January 4, 2011
(Saros 151)
SE2021Dec04T.png
December 4, 2021
(Saros 152)
SE2032Nov03P.png
November 3, 2032
(Saros 153)
SE2043Oct03A.png
October 3, 2043
(Saros 154)
SE2054Sep02P.png
September 2, 2054
(Saros 155)
SE2065Aug02P.png
August 2, 2065
(Saros 156)
SE2076Jul01P.png
July 1, 2076
(Saros 157)
SE2087Jun01P.png
June 1, 2087
(Saros 158)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1811Sep17A.gif
September 17, 1811
(Saros 141)
SE1840Aug27T.gif
August 27, 1840
(Saros 142)
SE1869Aug07T.png
August 7, 1869
(Saros 143)
SE1898Jul18A.png
July 18, 1898
(Saros 144)
SE1927Jun29T.png
June 29, 1927
(Saros 145)
SE1956Jun08T.png
June 8, 1956
(Saros 146)
SE1985May19P.png
May 19, 1985
(Saros 147)
SE2014Apr29A.png
April 29, 2014
(Saros 148)
SE2043Apr09T.png
April 9, 2043
(Saros 149)
SE2072Mar19P.png
March 19, 2072
(Saros 150)
SE2101Feb28A.png
February 28, 2101
(Saros 151)
Saros152 19van70 SE2130Feb08T.jpg
February 8, 2130
(Saros 152)
Saros153 17van70 SE2159Jan19A.jpg
January 19, 2159
(Saros 153)
Saros154 16van71 SE2187Dec29A.jpg
December 29, 2187
(Saros 154)

Notes

  1. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. "NASA - Catalog of Solar Eclipses of Saros 146". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of April 19, 2004</span> 21st-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Monday, April 19, 2004, with a magnitude of 0.7367. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. It was largely visible over the south Atlantic Ocean and north shores of Antarctica, most prominently the Antarctic Peninsula.

<span class="mw-page-title-main">Solar eclipse of February 26, 2017</span> 2017 annular solar eclipse in South America and Africa

An annular solar eclipse occurred at the Moon's descending node of orbit on Sunday, February 26, 2017, with a magnitude of 0.9922. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 4.7 days before perigee, the Moon's apparent diameter was larger. The moon's apparent diameter was just over 0.7% smaller than the Sun's.

<span class="mw-page-title-main">Solar eclipse of September 3, 2062</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, September 3, 2062, with a magnitude of 0.9749. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 14, 1955</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, December 14, 1955, with a magnitude of 0.9176. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 4, 1981</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit between Wednesday, February 4 and Thursday, February 5, 1981, with a magnitude of 0.9937. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. This annular solar eclipse was large because the Moon covered 99.4% of the Sun, with a path width of only 25 km . It was visible in Australia, crossing over Tasmania and southern Stewart Island of New Zealand near sunrise on February 5 (Thursday), and ended at sunset over western South America on February 4 (Wednesday). Occurring only 4 days before perigee, the moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of August 20, 1952</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Wednesday, August 20, 1952, with a magnitude of 0.942. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Peru including the capital city Lima, northeastern Chile, Bolivia including the constitutional capital Sucre and seat of government La Paz, Argentina, Paraguay, southern Brazil and Uruguay.

<span class="mw-page-title-main">Solar eclipse of February 28, 2044</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, February 28, 2044, with a magnitude of 0.96. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 16, 2047</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, December 16, 2047, with a magnitude of 0.8816. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 15, 2077</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, November 15, 2077, with a magnitude of 0.9371. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partially obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The path of annularity will cross North America and South America. This will be the 47th solar eclipse of Saros cycle 134. A small annular eclipse will cover only 93.71% of the Sun in a very broad path, 262 km wide at maximum, and will last 7 minutes and 54 seconds. Occurring only 4 days after apogee, the Moon's apparent diameter is smaller.

<span class="mw-page-title-main">Solar eclipse of April 21, 2069</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, April 21, 2069, with a magnitude of 0.8992. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 11, 2062</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Saturday, March 11, 2062, with a magnitude of 0.9331. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 23, 2071</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, September 23, 2071, with a magnitude of 1.0333. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 1, 2079</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Monday, May 1, 2079, with a magnitude of 1.0512. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The eclipse will be visible in Greenland, parts of eastern Canada and parts of the northeastern United States.

<span class="mw-page-title-main">Solar eclipse of November 4, 2078</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, November 4, 2078, with a magnitude of 0.9255. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The path of annularity will cross the Pacific Ocean, South America, and the Atlantic Ocean.

<span class="mw-page-title-main">Solar eclipse of June 2, 2095</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Thursday, June 2, 2095, with a magnitude of 1.0332. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 4, 2089</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, October 4, 2089, with a magnitude of 1.0333. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 28, 1949</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, April 28, 1949, with a magnitude of 0.6092. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 7, 1932</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Monday, March 7, 1932, with a magnitude of 0.9277. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 29, 1938</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Sunday, May 29, 1938, with a magnitude of 1.0552. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 3, 1927</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Monday, January 3, 1927, with a magnitude of 0.9995. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from New Zealand on January 4 (Tuesday), and Chile, Argentina, Uruguay and southern Brazil on January 3 (Monday).

References