Solar eclipse of November 9, 1855

Last updated
Solar eclipse of November 9, 1855
SE1855Nov09P.png
Map
Type of eclipse
NaturePartial
Gamma −1.2767
Magnitude 0.4892
Maximum eclipse
Coordinates 62°30′S121°00′E / 62.5°S 121°E / -62.5; 121
Times (UTC)
Greatest eclipse19:17:51
References
Saros 150 (8 of 71)
Catalog # (SE5000) 9176

A partial solar eclipse occurred at the Moon's descending node of orbit on Friday, November 9, 1855, with a magnitude of 0.4892. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

The partial solar eclipse was visible for parts of southern Oceania and Antarctica.

Description

The eclipse was visible in Tasmania and the southeasternmost areas of Australia, New Zealand and its surrounding islands such as Chatham and Cook and much of Antarctica which most areas had a 24-hour daylight with the exception of the northernmost peninsular area (from the areas south of the Antarctic Circle) and its surrounding islands and the northernmost area at the 50th meridian east. It included a tiny southeast area of the Indian Ocean, the southwesternmost of the Pacific and the tiny portion of the southernmost Atlantic. [1]

The eclipse started at sunrise west of New Zealand and ended at sunset off the coast of Antarctica. Areas that the eclipse ended slightly after or at sunrise included Sydney, Wollongong and Irvine in Australia. Areas that were in the rim of the eclipse included New Caledonia.

The greatest eclipse was in the Pacific Ocean hundreds of miles (or kilometers) north of Antarctica at 62.5 S & 121 E at 19:12 UTC (3:12 AM local time on November 10). [1]

The eclipse showed 25% obscuration in the south of South Island, New Zealand and up to 48% at the area of the greatest eclipse. [1]

The subsolar marking was in the Pacific Ocean around the Tropic of Capricorn.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [2]

November 9, 1855 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1855 November 09 at 17:35:59.1 UTC
Greatest Eclipse1855 November 09 at 19:17:51.3 UTC
Ecliptic Conjunction1855 November 09 at 19:31:50.5 UTC
Equatorial Conjunction1855 November 09 at 20:16:28.7 UTC
Last Penumbral External Contact1855 November 09 at 20:59:14.5 UTC
November 9, 1855 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.48923
Eclipse Obscuration0.37305
Gamma−1.27668
Sun Right Ascension14h57m33.1s
Sun Declination-16°53'13.5"
Sun Semi-Diameter16'09.4"
Sun Equatorial Horizontal Parallax08.9"
Moon Right Ascension14h55m40.0s
Moon Declination-17°59'34.7"
Moon Semi-Diameter15'19.5"
Moon Equatorial Horizontal Parallax0°56'14.8"
ΔT7.1 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of October–November 1855
October 25
Ascending node (full moon)
November 9
Descending node (new moon)
SE1855Nov09P.gif
Total lunar eclipse
Lunar Saros 124
Partial solar eclipse
Solar Saros 150

Eclipses in 1855

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 150

Inex

Triad

Solar eclipses of 1852–1855

This eclipse is a member of a semester series . An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]

The partial solar eclipse on January 21, 1852 occurs in the previous lunar year eclipse set.

Solar eclipse series sets from 1852 to 1855
Ascending node Descending node
SarosMapGammaSarosMapGamma
115June 17, 1852
SE1852Jun17P.gif
Partial
−1.1111120December 11, 1852
SE1852Dec11T.gif
Total
0.8551
125June 6, 1853
SE1853Jun06A.gif
Annular
−0.3686130 November 30, 1853
SE1853Nov30T.png
Total
0.1763
135 May 26, 1854
SE1854May26A.png
Annular
0.3918140November 20, 1854
SE1854Nov20H.png
Hybrid
−0.5179
145May 16, 1855
SE1855May16P.gif
Partial
1.1249150 November 9, 1855
SE1855Nov09P.gif
Partial
−1.2767

Saros 150

This eclipse is a part of Saros series 150, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on August 24, 1729. It contains annular eclipses from April 22, 2126 through June 22, 2829. There are no hybrid or total eclipses in this set. The series ends at member 71 as a partial eclipse on September 29, 2991. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 45 at 9 minutes, 58 seconds on December 19, 2522. All eclipses in this series occur at the Moon’s descending node of orbit. [4]

Series members 5–27 occur between 1801 and 2200:
567
SE1801Oct07P.png
October 7, 1801
SE1819Oct19P.gif
October 19, 1819
SE1837Oct29P.gif
October 29, 1837
8910
SE1855Nov09P.gif
November 9, 1855
SE1873Nov20P.gif
November 20, 1873
SE1891Dec01P.gif
December 1, 1891
111213
SE1909Dec12P.png
December 12, 1909
SE1927Dec24P.png
December 24, 1927
SE1946Jan03P.png
January 3, 1946
141516
SE1964Jan14P.png
January 14, 1964
SE1982Jan25P.png
January 25, 1982
SE2000Feb05P.png
February 5, 2000
171819
SE2018Feb15P.png
February 15, 2018
SE2036Feb27P.png
February 27, 2036
SE2054Mar09P.png
March 9, 2054
202122
SE2072Mar19P.png
March 19, 2072
SE2090Mar31P.png
March 31, 2090
SE2108Apr11P.gif
April 11, 2108
232425
Saros150 23van71 SE2126Apr22A.jpg
April 22, 2126
Saros150 24van71 SE2144May03A.jpg
May 3, 2144
Saros150 25van71 SE2162May14A.jpg
May 14, 2162
2627
Saros150 26van71 SE2180May24A.jpg
May 24, 2180
Saros150 27van71 SE2198Jun04A.jpg
June 4, 2198

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

24 eclipse events between August 28, 1802 and August 28, 1859
August 27–28June 16April 3–4January 20–21November 9
122124126128130
SE1802Aug28A.png
August 28, 1802
SE1806Jun16T.png
June 16, 1806
SE1810Apr04A.gif
April 4, 1810
SE1814Jan21A.gif
January 21, 1814
SE1817Nov09T.gif
November 9, 1817
132134136138140
SE1821Aug27A.gif
August 27, 1821
SE1825Jun16H.gif
June 16, 1825
SE1829Apr03T.gif
April 3, 1829
SE1833Jan20A.gif
January 20, 1833
SE1836Nov09T.gif
November 9, 1836
142144146148150
SE1840Aug27T.gif
August 27, 1840
SE1844Jun16P.gif
June 16, 1844
SE1848Apr03P.png
April 3, 1848
SE1852Jan21P.png
January 21, 1852
SE1855Nov09P.gif
November 9, 1855
152
SE1859Aug28P.gif
August 28, 1859

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 1888
SE1801Apr13P.png
April 13, 1801
(Saros 145)
SE1812Mar13P.gif
March 13, 1812
(Saros 146)
SE1823Feb11P.gif
February 11, 1823
(Saros 147)
SE1834Jan09P.gif
January 9, 1834
(Saros 148)
SE1844Dec09P.gif
December 9, 1844
(Saros 149)
SE1855Nov09P.gif
November 9, 1855
(Saros 150)
SE1866Oct08P.gif
October 8, 1866
(Saros 151)
SE1877Sep07P.gif
September 7, 1877
(Saros 152)
SE1888Aug07P.gif
August 7, 1888
(Saros 153)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1826Nov29P.gif
November 29, 1826
(Saros 149)
SE1855Nov09P.png
November 9, 1855
(Saros 150)
SE1884Oct19P.gif
October 19, 1884
(Saros 151)
SE1913Sep30P.png
September 30, 1913
(Saros 152)
SE1942Sep10P.png
September 10, 1942
(Saros 153)
SE1971Aug20P.png
August 20, 1971
(Saros 154)
SE2000Jul31P.png
July 31, 2000
(Saros 155)
SE2029Jul11P.png
July 11, 2029
(Saros 156)
SE2058Jun21P.png
June 21, 2058
(Saros 157)
SE2087Jun01P.png
June 1, 2087
(Saros 158)
Saros161 01van72 SE2174Apr01P.jpg
April 1, 2174
(Saros 161)

See also

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of February 5, 2000</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon’s descending node of orbit on Saturday, February 5, 2000, with a magnitude of 0.5795. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 17, 1996</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit between Wednesday, April 17 and Thursday, April 18, 1996, with a magnitude of 0.8799. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 13, 1993</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit between Saturday, November 13 and Sunday, November 14, 1993, with a magnitude of 0.928. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 27, 2036</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Wednesday, February 27, 2036, with a magnitude of 0.6286. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 31, 1989</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, August 31, 1989, with a magnitude of 0.6344. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 9, 1986</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, April 9, 1986, with a magnitude of 0.8236. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 22, 1979</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, August 22, 1979, with a magnitude of 0.9329. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 15 hours before apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of April 7, 1978</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Friday, April 7, 1978, with a magnitude of 0.7883. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 3, 1975</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Monday, November 3, 1975, with a magnitude of 0.9588. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of January 16, 1972</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Sunday, January 16, 1972, with a magnitude of 0.9692. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 7.3 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of August 11, 1961</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, August 11, 1961, with a magnitude of 0.9375. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 7 hours after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of March 27, 1960</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, March 27, 1960, with a magnitude of 0.7058. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 9, 1953</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, August 9, 1953, with a magnitude of 0.3729. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 11, 2040</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, May 11, 2040, with a magnitude of 0.5306. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 9, 2054</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Monday, March 9, 2054, with a magnitude of 0.6678. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 19, 2072</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, March 19, 2072, with a magnitude of 0.7199. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 31, 2090</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, March 31, 2090, with a magnitude of 0.7843. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 12, 1939</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, October 12, 1939, with a magnitude of 1.0266. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.8 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of October 1, 1921</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 1, 1921, with a magnitude of 1.0293. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.9 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of December 24, 1927</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, December 24, 1927, with a magnitude of 0.549. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. 1 2 3 "Solar eclipse of November 9, 1855". NASA. Retrieved March 21, 2017.
  2. "Partial Solar Eclipse of 1855 Nov 09". EclipseWise.com. Retrieved 17 September 2024.
  3. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. "NASA - Catalog of Solar Eclipses of Saros 150". eclipse.gsfc.nasa.gov.