Solar eclipse of April 19, 2004

Last updated
Solar eclipse of April 19, 2004
SE2004Apr19P.png
Map
Type of eclipse
NaturePartial
Gamma −1.1335
Magnitude 0.7367
Maximum eclipse
Coordinates 61°36′S44°18′E / 61.6°S 44.3°E / -61.6; 44.3
Times (UTC)
Greatest eclipse13:35:05
References
Saros 119 (65 of 71)
Catalog # (SE5000) 9517

A partial solar eclipse occurred at the Moon's ascending node of orbit on Monday, April 19, 2004, [1] [2] [3] with a magnitude of 0.7367. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

The eclipse was largely visible over the south Atlantic Ocean and north shores of Antarctica, most prominently the Antarctic Peninsula. The eclipse could also be seen in southern Africa at sunset. Considering the magnitude and the solar altitude, South Africa was the best place to observe this eclipse. In Cape Town, the Sun was about 40% obscured, while in Pretoria the Sun was 29% obscured. Further north, the eclipse remained visible up to Angola, the southern Democratic Republic of the Congo and Tanzania.

Images

SE2004Apr19P.gif
Animated eclipse path

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [4]

April 19, 2004 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact2004 April 19 at 11:30:59.6 UTC
Equatorial Conjunction2004 April 19 at 12:30:29.4 UTC
Ecliptic Conjunction2004 April 19 at 13:22:15.9 UTC
Greatest Eclipse2004 April 19 at 13:35:05.3 UTC
Last Penumbral External Contact2004 April 19 at 15:39:41.1 UTC
April 19, 2004 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.73674
Eclipse Obscuration0.65501
Gamma−1.13345
Sun Right Ascension01h50m58.6s
Sun Declination+11°24'41.2"
Sun Semi-Diameter15'55.2"
Sun Equatorial Horizontal Parallax08.8"
Moon Right Ascension01h52m50.5s
Moon Declination+10°28'42.9"
Moon Semi-Diameter15'01.7"
Moon Equatorial Horizontal Parallax0°55'09.3"
ΔT64.6 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of April–May 2004
April 19
Ascending node (new moon)
May 4
Descending node (full moon)
SE2004Apr19P.png Lunar eclipse chart close-04may04.png
Partial solar eclipse
Solar Saros 119
Total lunar eclipse
Lunar Saros 131

Eclipses in 2004

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 119

Inex

Triad

Solar eclipses of 2004–2007

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [5]

Solar eclipse series sets from 2004 to 2007
Ascending node Descending node
SarosMapGammaSarosMapGamma
119 April 19, 2004
SE2004Apr19P.png
Partial
−1.13345124 October 14, 2004
SE2004Oct14P.png
Partial
1.03481
129
Solar eclipse at sunset (2937676527) (cropped).jpg
Partial in Naiguatá, Venezuela
April 8, 2005
SE2005Apr08H.png
Hybrid
−0.34733134
Ecl-ann.jpg
Annularity in Madrid, Spain
October 3, 2005
SE2005Oct03A.png
Annular
0.33058
139
Diamondring-eclipse-March03-29-2006.jpg
Totality in Side, Turkey
March 29, 2006
SE2006Mar29T.png
Total
0.38433144
Helder da Rocha - Partial solar eclipse (by-sa).jpg
Partial in São Paulo, Brazil
September 22, 2006
SE2006Sep22A.png
Annular
−0.40624
149
Solar Eclipse (3445953058) (cropped).jpg
Partial in Jaipur, India
March 19, 2007
SE2007Mar19P.png
Partial
1.07277154
Eclipse solar 01 (1360685468) (cropped).jpg
Partial in Córdoba, Argentina
September 11, 2007
SE2007Sep11P.png
Partial
−1.12552

Saros 119

This eclipse is a part of Saros series 119, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on May 15, 850 AD. It contains total eclipses on August 9, 994 AD and August 20, 1012; a hybrid eclipse on August 31, 1030; and annular eclipses from September 10, 1048 through March 18, 1950. The series ends at member 71 as a partial eclipse on June 24, 2112. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 10 at 32 seconds on August 20, 1012, and the longest duration of annularity was produced by member 44 at 7 minutes, 37 seconds on September 1, 1625. All eclipses in this series occur at the Moon’s ascending node of orbit. [6]

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events between July 1, 2000 and July 1, 2076
July 1–2April 19–20February 5–7November 24–25September 12–13
117119121123125
SE2000Jul01P.png
July 1, 2000
SE2004Apr19P.png
April 19, 2004
SE2008Feb07A.png
February 7, 2008
SE2011Nov25P.png
November 25, 2011
SE2015Sep13P.png
September 13, 2015
127129131133135
SE2019Jul02T.png
July 2, 2019
SE2023Apr20H.png
April 20, 2023
SE2027Feb06A.png
February 6, 2027
SE2030Nov25T.png
November 25, 2030
SE2034Sep12A.png
September 12, 2034
137139141143145
SE2038Jul02A.png
July 2, 2038
SE2042Apr20T.png
April 20, 2042
SE2046Feb05A.png
February 5, 2046
SE2049Nov25H.png
November 25, 2049
SE2053Sep12T.png
September 12, 2053
147149151153155
SE2057Jul01A.png
July 1, 2057
SE2061Apr20T.png
April 20, 2061
SE2065Feb05P.png
February 5, 2065
SE2068Nov24P.png
November 24, 2068
SE2072Sep12T.png
September 12, 2072
157
SE2076Jul01P.png
July 1, 2076

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipses on March 27, 1884 (part of Saros 108) and December 24, 1916 (part of Saros 111) are also a part of this series but are not included in the table below.

Series members between 1971 and 2200
SE1971Jul22P.png
July 22, 1971
(Saros 116)
SE1982Jun21P.png
June 21, 1982
(Saros 117)
SE1993May21P.png
May 21, 1993
(Saros 118)
SE2004Apr19P.png
April 19, 2004
(Saros 119)
SE2015Mar20T.png
March 20, 2015
(Saros 120)
SE2026Feb17A.png
February 17, 2026
(Saros 121)
SE2037Jan16P.png
January 16, 2037
(Saros 122)
SE2047Dec16P.png
December 16, 2047
(Saros 123)
SE2058Nov16P.png
November 16, 2058
(Saros 124)
SE2069Oct15P.png
October 15, 2069
(Saros 125)
SE2080Sep13P.png
September 13, 2080
(Saros 126)
SE2091Aug15T.png
August 15, 2091
(Saros 127)
SE2102Jul15A.png
July 15, 2102
(Saros 128)
SE2113Jun13T.png
June 13, 2113
(Saros 129)
SE2124May14T.png
May 14, 2124
(Saros 130)
SE2135Apr13A.png
April 13, 2135
(Saros 131)
SE2146Mar12A.png
March 12, 2146
(Saros 132)
SE2157Feb09T.png
February 9, 2157
(Saros 133)
SE2168Jan10A.png
January 10, 2168
(Saros 134)
SE2178Dec09A.png
December 9, 2178
(Saros 135)
SE2189Nov08T.png
November 8, 2189
(Saros 136)
SE2200Oct09A.png
October 9, 2200
(Saros 137)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1801Sep08P.png
September 8, 1801
(Saros 112)
SE1830Aug18P.gif
August 18, 1830
(Saros 113)
SE1859Jul29P.gif
July 29, 1859
(Saros 114)
SE1888Jul09P.gif
July 9, 1888
(Saros 115)
SE1917Jun19P.png
June 19, 1917
(Saros 116)
SE1946May30P.png
May 30, 1946
(Saros 117)
SE1975May11P.png
May 11, 1975
(Saros 118)
SE2004Apr19P.png
April 19, 2004
(Saros 119)
SE2033Mar30T.png
March 30, 2033
(Saros 120)
SE2062Mar11P.png
March 11, 2062
(Saros 121)
SE2091Feb18P.png
February 18, 2091
(Saros 122)
Saros123 59van70 SE2120Jan30P.jpg
January 30, 2120
(Saros 123)
Saros124 62van73 SE2149Jan09P.jpg
January 9, 2149
(Saros 124)
Saros125 63van73 SE2177Dec20P.jpg
December 20, 2177
(Saros 125)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of February 5, 2000</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon’s descending node of orbit on Saturday, February 5, 2000, with a magnitude of 0.5795. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 1, 2000</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon’s ascending node of orbit on Saturday, July 1, 2000, with a magnitude of 0.4768. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 15, 2018</span> 21st-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, February 15, 2018, with a magnitude of 0.5991. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 17, 1996</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit between Wednesday, April 17 and Thursday, April 18, 1996, with a magnitude of 0.8799. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 12, 1996</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 12, 1996, with a magnitude of 0.7575. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of January 14, 2029</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Sunday, January 14, 2029, with a magnitude of 0.8714. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 27, 2036</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Wednesday, February 27, 2036, with a magnitude of 0.6286. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 31, 1989</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, August 31, 1989, with a magnitude of 0.6344. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 21, 1982</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Monday, June 21, 1982, with a magnitude of 0.6168. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 22, 1971</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, July 22, 1971, with a magnitude of 0.0689. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 9, 1967</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, May 9, 1967, with a magnitude of 0.7201. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 27, 1960</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, March 27, 1960, with a magnitude of 0.7058. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 14, 2050</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, November 14, 2050, with a magnitude of 0.8874. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 16, 2058</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, November 16, 2058, with a magnitude of 0.7644. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 3, 2065</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, July 3, 2065, with a magnitude of 0.1638. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 12, 2094</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, July 12, 2094, with a magnitude of 0.4224. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 31, 2090</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, March 31, 2090, with a magnitude of 0.7843. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 15, 2083</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit between Wednesday, July 14 and Thursday, July 15, 2083, with a magnitude of 0.0168. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 28, 1949</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, April 28, 1949, with a magnitude of 0.6092. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 24, 1927</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, December 24, 1927, with a magnitude of 0.549. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. "April 19, 2004 Partial Solar Eclipse". timeanddate. Retrieved 11 August 2024.
  2. "Sky". The Desert Sun. 2004-04-19. p. 32. Retrieved 2023-10-25 via Newspapers.com.
  3. "The stars". Poughkeepsie Journal. 2004-04-19. p. 2B. Retrieved 2023-10-25 via Newspapers.com.
  4. "Partial Solar Eclipse of 2004 Apr 19". EclipseWise.com. Retrieved 11 August 2024.
  5. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  6. "NASA - Catalog of Solar Eclipses of Saros 119". eclipse.gsfc.nasa.gov.