Solar eclipse of April 8, 1921

Last updated
Solar eclipse of April 8, 1921
SE1921Apr08A.png
Map
Type of eclipse
NatureAnnular
Gamma 0.8869
Magnitude 0.9753
Maximum eclipse
Duration110 s (1 min 50 s)
Coordinates 64°30′N5°36′E / 64.5°N 5.6°E / 64.5; 5.6
Max. width of band192 km (119 mi)
Times (UTC)
Greatest eclipse9:15:01
References
Saros 118 (63 of 72)
Catalog # (SE5000) 9330

An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, April 8, 1921, [1] with a magnitude of 0.9753. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 6.5 days after apogee (on April 1, 1921, at 20:50 UTC) and 8.3 days before perigee (on April 16, 1921, at 16:10 UTC). [2]

Contents

Annularity was visible from northern Scotland, northwestern tip of Norway, and islands in the Arctic Ocean in Russian SFSR. A partial eclipse was visible for parts of North Africa, Europe, Central Asia, and the Russian SFSR.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]

April 8, 1921 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1921 April 08 at 06:51:44.6 UTC
First Umbral External Contact1921 April 08 at 08:21:25.5 UTC
First Central Line1921 April 08 at 08:23:38.1 UTC
Greatest Duration1921 April 08 at 08:23:38.1 UTC
First Umbral Internal Contact1921 April 08 at 08:25:55.2 UTC
Ecliptic Conjunction1921 April 08 at 09:05:08.6 UTC
Greatest Eclipse1921 April 08 at 09:15:01.3 UTC
Equatorial Conjunction1921 April 08 at 09:44:56.4 UTC
Last Umbral Internal Contact1921 April 08 at 10:03:48.2 UTC
Last Central Line1921 April 08 at 10:06:02.5 UTC
Last Umbral External Contact1921 April 08 at 10:08:12.1 UTC
Last Penumbral External Contact1921 April 08 at 11:37:57.8 UTC
April 8, 1921 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.97530
Eclipse Obscuration0.95120
Gamma0.88692
Sun Right Ascension01h06m22.7s
Sun Declination+07°03'40.4"
Sun Semi-Diameter15'58.0"
Sun Equatorial Horizontal Parallax08.8"
Moon Right Ascension01h05m24.3s
Moon Declination+07°51'45.1"
Moon Semi-Diameter15'28.0"
Moon Equatorial Horizontal Parallax0°56'45.6"
ΔT22.3 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of April 1921
April 8
Descending node (new moon)
April 22
Ascending node (full moon)
SE1921Apr08A.png Lunar eclipse chart close-1921Apr22.png
Annular solar eclipse
Solar Saros 118
Total lunar eclipse
Lunar Saros 130

Eclipses in 1921

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 118

Inex

Triad

Solar eclipses of 1921–1924

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]

The partial solar eclipse on July 31, 1924 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1921 to 1924
Descending node Ascending node
SarosMapGammaSarosMapGamma
118 April 8, 1921
SE1921Apr08A.png
Annular
0.8869123 October 1, 1921
SE1921Oct01T.png
Total
−0.9383
128 March 28, 1922
SE1922Mar28A.png
Annular
0.1711133 September 21, 1922
SE1922Sep21T.png
Total
−0.213
138 March 17, 1923
SE1923Mar17A.png
Annular
−0.5438143 September 10, 1923
SE1923Sep10T.png
Total
0.5149
148 March 5, 1924
SE1924Mar05P.png
Partial
−1.2232153 August 30, 1924
SE1924Aug30P.png
Partial
1.3123

Saros 118

This eclipse is a part of Saros series 118, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on May 24, 803 AD. It contains total eclipses from August 19, 947 AD through October 25, 1650; hybrid eclipses on November 4, 1668 and November 15, 1686; and annular eclipses from November 27, 1704 through April 30, 1957. The series ends at member 72 as a partial eclipse on July 15, 2083. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 34 at 6 minutes, 59 seconds on May 16, 1398, and the longest duration of annularity was produced by member 59 at 1 minutes, 58 seconds on February 23, 1849. All eclipses in this series occur at the Moon’s descending node of orbit. [5]

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between April 8, 1902 and August 31, 1989
April 7–8January 24–25November 12August 31–September 1June 19–20
108110112114116
SE1902Apr08P.png
April 8, 1902
SE1913Aug31P.png
August 31, 1913
SE1917Jun19P.png
June 19, 1917
118120122124126
SE1921Apr08A.png
April 8, 1921
SE1925Jan24T.png
January 24, 1925
SE1928Nov12P.png
November 12, 1928
SE1932Aug31T.png
August 31, 1932
SE1936Jun19T.png
June 19, 1936
128130132134136
SE1940Apr07A.png
April 7, 1940
SE1944Jan25T.png
January 25, 1944
SE1947Nov12A.png
November 12, 1947
SE1951Sep01A.png
September 1, 1951
SE1955Jun20T.png
June 20, 1955
138140142144146
SE1959Apr08A.png
April 8, 1959
SE1963Jan25A.png
January 25, 1963
SE1966Nov12T.png
November 12, 1966
SE1970Aug31A.png
August 31, 1970
SE1974Jun20T.png
June 20, 1974
148150152154
SE1978Apr07P.png
April 7, 1978
SE1982Jan25P.png
January 25, 1982
SE1985Nov12T.png
November 12, 1985
SE1989Aug31P.png
August 31, 1989

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1801Mar14P.png
March 14, 1801
(Saros 107)
SE1812Feb12P.gif
February 12, 1812
(Saros 108)
SE1823Jan12P.gif
January 12, 1823
(Saros 109)
SE1844Nov10P.gif
November 10, 1844
(Saros 111)
SE1877Aug09P.gif
August 9, 1877
(Saros 114)
SE1888Jul09P.gif
July 9, 1888
(Saros 115)
SE1899Jun08P.gif
June 8, 1899
(Saros 116)
SE1910May09T.png
May 9, 1910
(Saros 117)
SE1921Apr08A.png
April 8, 1921
(Saros 118)
SE1932Mar07A.png
March 7, 1932
(Saros 119)
SE1943Feb04T.png
February 4, 1943
(Saros 120)
SE1954Jan05A.png
January 5, 1954
(Saros 121)
SE1964Dec04P.png
December 4, 1964
(Saros 122)
SE1975Nov03P.png
November 3, 1975
(Saros 123)
SE1986Oct03H.png
October 3, 1986
(Saros 124)
SE1997Sep02P.png
September 2, 1997
(Saros 125)
SE2008Aug01T.png
August 1, 2008
(Saros 126)
SE2019Jul02T.png
July 2, 2019
(Saros 127)
SE2030Jun01A.png
June 1, 2030
(Saros 128)
SE2041Apr30T.png
April 30, 2041
(Saros 129)
SE2052Mar30T.png
March 30, 2052
(Saros 130)
SE2063Feb28A.png
February 28, 2063
(Saros 131)
SE2074Jan27A.png
January 27, 2074
(Saros 132)
SE2084Dec27T.png
December 27, 2084
(Saros 133)
SE2095Nov27A.png
November 27, 2095
(Saros 134)
SE2106Oct26A.png
October 26, 2106
(Saros 135)
SE2117Sep26T.png
September 26, 2117
(Saros 136)
SE2128Aug25A.png
August 25, 2128
(Saros 137)
SE2139Jul25A.png
July 25, 2139
(Saros 138)
SE2150Jun25T.png
June 25, 2150
(Saros 139)
SE2161May25A.png
May 25, 2161
(Saros 140)
SE2172Apr23A.png
April 23, 2172
(Saros 141)
SE2183Mar23T.png
March 23, 2183
(Saros 142)
SE2194Feb21A.png
February 21, 2194
(Saros 143)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1805Jun26P.gif
June 26, 1805
(Saros 114)
SE1834Jun07P.gif
June 7, 1834
(Saros 115)
SE1863May17P.gif
May 17, 1863
(Saros 116)
SE1892Apr26T.png
April 26, 1892
(Saros 117)
SE1921Apr08A.png
April 8, 1921
(Saros 118)
SE1950Mar18A.png
March 18, 1950
(Saros 119)
SE1979Feb26T.png
February 26, 1979
(Saros 120)
SE2008Feb07A.png
February 7, 2008
(Saros 121)
SE2037Jan16P.png
January 16, 2037
(Saros 122)
SE2065Dec27P.png
December 27, 2065
(Saros 123)
SE2094Dec07P.png
December 7, 2094
(Saros 124)
Saros125 60van73 SE2123Nov18P.jpg
November 18, 2123
(Saros 125)
Saros126 55van72 SE2152Oct28P.jpg
October 28, 2152
(Saros 126)
Saros127 67van82 SE2181Oct08P.jpg
October 8, 2181
(Saros 127)

Notes

  1. "April 8, 1921 Annular Solar Eclipse". timeanddate. Retrieved 2 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 2 August 2024.
  3. "Annular Solar Eclipse of 1921 Apr 08". EclipseWise.com. Retrieved 2 August 2024.
  4. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. "NASA - Catalog of Solar Eclipses of Saros 118". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of October 12, 1996</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 12, 1996, with a magnitude of 0.7575. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 9, 2032</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, May 9, 2032, with a magnitude of 0.9957. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 7, 1978</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Friday, April 7, 1978, with a magnitude of 0.7883. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 9, 1967</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, May 9, 1967, with a magnitude of 0.7201. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 14, 2042</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, October 14, 2042, with a magnitude of 0.93. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 16, 2056</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, January 16, 2056, with a magnitude of 0.9759. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 24, 2060</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, October 24, 2060, with a magnitude of 0.9277. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 28, 2063</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, February 28, 2063, with a magnitude of 0.9293. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 6, 2067</span> Hybrid eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 4, 2097</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, November 4, 2097, with a magnitude of 0.9494. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 10, 1934</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, August 10, 1934, with a magnitude of 0.9436. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 31, 2090</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, March 31, 2090, with a magnitude of 0.7843. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 12, 1947</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Wednesday, November 12, 1947, with a magnitude of 0.965. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from the Pacific Ocean, Peru, Ecuador, Colombia and Brazil.

<span class="mw-page-title-main">Solar eclipse of February 24, 1933</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, February 24, 1933, with a magnitude of 0.9841. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Chile, Argentina, Portuguese Angola, French Equatorial Africa, Belgian Congo, Anglo-Egyptian Sudan, Ethiopia, French Somaliland, southeastern Italian Eritrea, and Mutawakkilite Kingdom of Yemen, Aden Protectorate and Aden Province in British Raj.

<span class="mw-page-title-main">Solar eclipse of October 12, 1939</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, October 12, 1939, with a magnitude of 1.0266. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 19, 1939</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Wednesday, April 19, 1939, with a magnitude of 0.9731. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 27, 1941</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Thursday, March 27, 1941, with a magnitude of 0.9355. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Peru, Bolivia and Brazil.

<span class="mw-page-title-main">Solar eclipse of March 7, 1932</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Monday, March 7, 1932, with a magnitude of 0.9277. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 1, 1921</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 1, 1921, with a magnitude of 1.0293. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.9 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of June 19, 1917</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Tuesday, June 19, 1917, with a magnitude of 0.4729. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References