Solar eclipse of July 9, 1964

Last updated
Solar eclipse of July 9, 1964
SE1964Jul09P.png
Map
Type of eclipse
NaturePartial
Gamma 1.3623
Magnitude 0.3221
Maximum eclipse
Coordinates 67°36′N172°54′W / 67.6°N 172.9°W / 67.6; -172.9
Times (UTC)
Greatest eclipse11:17:53
References
Saros 155 (3 of 71)
Catalog # (SE5000) 9429

A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, July 9, 1964, [1] with a magnitude of 0.3221. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

This was the third of four partial solar eclipses in 1964, with the others occurring on January 14, June 10, and December 4.

A partial eclipse was visible for parts of Canada, Greenland, and the eastern Soviet Union.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [2]

July 9, 1964 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1964 July 09 at 10:05:53.0 UTC
Equatorial Conjunction1964 July 09 at 11:13:17.6 UTC
Greatest Eclipse1964 July 09 at 11:17:53.0 UTC
Ecliptic Conjunction1964 July 09 at 11:31:22.2 UTC
Last Penumbral External Contact1964 July 09 at 12:29:56.9 UTC
July 9, 1964 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.32215
Eclipse Obscuration0.21157
Gamma1.36228
Sun Right Ascension07h14m49.0s
Sun Declination+22°19'48.2"
Sun Semi-Diameter15'43.9"
Sun Equatorial Horizontal Parallax08.6"
Moon Right Ascension07h15m00.8s
Moon Declination+23°42'32.7"
Moon Semi-Diameter16'35.8"
Moon Equatorial Horizontal Parallax1°00'54.7"
ΔT35.4 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of June–July 1964
June 10
Ascending node (new moon)
June 25
Descending node (full moon)
July 9
Ascending node (new moon)
SE1964Jun10P.png Lunar eclipse chart close-1964Jun25.png SE1964Jul09P.png
Partial solar eclipse
Solar Saros 117
Total lunar eclipse
Lunar Saros 129
Partial solar eclipse
Solar Saros 155

Eclipses in 1964

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 155

Inex

Triad

Solar eclipses of 1961–1964

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]

The partial solar eclipses on June 10, 1964 and December 4, 1964 occur in the next lunar year eclipse set.

Solar eclipse series sets from 1961 to 1964
Descending node Ascending node
SarosMapGammaSarosMapGamma
120
1961 Total Solar Eclipse.jpg
February 15, 1961
SE1961Feb15T.png
Total
0.883125 August 11, 1961
SE1961Aug11A.png
Annular
−0.8859
130 February 5, 1962
SE1962Feb05T.png
Total
0.2107135 July 31, 1962
SE1962Jul31A.png
Annular
−0.113
140 January 25, 1963
SE1963Jan25A.png
Annular
−0.4898145 July 20, 1963
SE1963Jul20T.png
Total
0.6571
150 January 14, 1964
SE1964Jan14P.png
Partial
−1.2354155 July 9, 1964
SE1964Jul09P.png
Partial
1.3623

Saros 155

This eclipse is a part of Saros series 155, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on June 17, 1928. It contains total eclipses from September 12, 2072 through August 30, 2649; hybrid eclipses from September 10, 2667 through October 2, 2703; and annular eclipses from October 13, 2721 through May 8, 3064. The series ends at member 71 as a partial eclipse on July 24, 3190. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality will be produced by member 14 at 4 minutes, 5 seconds on November 6, 2162, and the longest duration of annularity will be produced by member 63 at 5 minutes, 31 seconds on April 28, 3046. All eclipses in this series occur at the Moon’s ascending node of orbit. [4]

Series members 1–16 occur between 1928 and 2200:
123
SE1928Jun17P.png
June 17, 1928
SE1946Jun29P.png
June 29, 1946
SE1964Jul09P.png
July 9, 1964
456
SE1982Jul20P.png
July 20, 1982
SE2000Jul31P.png
July 31, 2000
SE2018Aug11P.png
August 11, 2018
789
SE2036Aug21P.png
August 21, 2036
SE2054Sep02P.png
September 2, 2054
SE2072Sep12T.png
September 12, 2072
101112
SE2090Sep23T.png
September 23, 2090
Saros155 11van71 SE2108Oct05T.jpg
October 5, 2108
Saros155 12van71 SE2126Oct16T.jpg
October 16, 2126
131415
Saros155 13van71 SE2144Oct26T.jpg
October 26, 2144
Saros155 14van71 SE2162Nov07T.jpg
November 7, 2162
Saros155 15van71 SE2180Nov17T.jpg
November 17, 2180
16
Saros155 16van71 SE2198Nov28T.jpg
November 28, 2198

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between December 2, 1880 and July 9, 1964
December 2–3September 20–21July 9–10April 26–28February 13–14
111113115117119
SE1880Dec02P.gif
December 2, 1880
SE1888Jul09P.gif
July 9, 1888
SE1892Apr26T.gif
April 26, 1892
SE1896Feb13A.png
February 13, 1896
121123125127129
SE1899Dec03A.gif
December 3, 1899
SE1903Sep21T.png
September 21, 1903
SE1907Jul10A.png
July 10, 1907
SE1911Apr28T.png
April 28, 1911
SE1915Feb14A.png
February 14, 1915
131133135137139
SE1918Dec03A.png
December 3, 1918
SE1922Sep21T.png
September 21, 1922
SE1926Jul09A.png
July 9, 1926
SE1930Apr28H.png
April 28, 1930
SE1934Feb14T.png
February 14, 1934
141143145147149
SE1937Dec02A.png
December 2, 1937
SE1941Sep21T.png
September 21, 1941
SE1945Jul09T.png
July 9, 1945
SE1949Apr28P.png
April 28, 1949
SE1953Feb14P.png
February 14, 1953
151153155
SE1956Dec02P.png
December 2, 1956
SE1960Sep20P.png
September 20, 1960
SE1964Jul09P.png
July 9, 1964

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 1964
SE1811Sep17A.gif
September 17, 1811
(Saros 141)
SE1822Aug16T.gif
August 16, 1822
(Saros 142)
SE1833Jul17T.gif
July 17, 1833
(Saros 143)
SE1844Jun16P.gif
June 16, 1844
(Saros 144)
SE1855May16P.gif
May 16, 1855
(Saros 145)
SE1866Apr15P.gif
April 15, 1866
(Saros 146)
SE1877Mar15P.gif
March 15, 1877
(Saros 147)
SE1888Feb11P.gif
February 11, 1888
(Saros 148)
SE1899Jan11P.gif
January 11, 1899
(Saros 149)
SE1909Dec12P.png
December 12, 1909
(Saros 150)
SE1920Nov10P.png
November 10, 1920
(Saros 151)
SE1931Oct11P.png
October 11, 1931
(Saros 152)
SE1942Sep10P.png
September 10, 1942
(Saros 153)
SE1953Aug09P.png
August 9, 1953
(Saros 154)
SE1964Jul09P.png
July 9, 1964
(Saros 155)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 1964
SE1819Oct19P.png
October 19, 1819
(Saros 150)
SE1848Sep27P.gif
September 27, 1848
(Saros 151)
SE1877Sep07P.gif
September 7, 1877
(Saros 152)
SE1906Aug20P.png
August 20, 1906
(Saros 153)
SE1935Jul30P.png
July 30, 1935
(Saros 154)
SE1964Jul09P.png
July 9, 1964
(Saros 155)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of October 12, 1996</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 12, 1996, with a magnitude of 0.7575. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 13, 1993</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit between Saturday, November 13 and Sunday, November 14, 1993, with a magnitude of 0.928. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. It was visible at sunrise over parts of Australia on November 14 (Sunday), and ended at sunset over the southern tip of South America on November 13 (Saturday).

<span class="mw-page-title-main">Solar eclipse of December 24, 1992</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, December 24, 1992, with a magnitude of 0.8422. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 9, 1986</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, April 9, 1986, with a magnitude of 0.8236. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 21, 1982</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Monday, June 21, 1982, with a magnitude of 0.6168. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. Occurring only 7 minutes before perigee, the Moon's apparent diameter was completely larger.

<span class="mw-page-title-main">Solar eclipse of July 20, 1982</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, July 20, 1982, with a magnitude of 0.4643. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 3, 1975</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Monday, November 3, 1975, with a magnitude of 0.9588. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 9, 1967</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, May 9, 1967, with a magnitude of 0.7201. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 10, 1964</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, June 10, 1964, with a magnitude of 0.7545. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 11, 2040</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, May 11, 2040, with a magnitude of 0.5306. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 14, 2050</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, November 14, 2050, with a magnitude of 0.8874. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 4, 2051</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, October 4, 2051, with a magnitude of 0.6024. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 1, 2057</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, July 1, 2057, with a magnitude of 0.9464. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 17, 2064</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, February 17, 2064, with a magnitude of 0.9262. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 5, 2065</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Thursday, February 5, 2065, with a magnitude of 0.9123. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 24, 2068</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Saturday, November 24, 2068, with a magnitude of 0.9109. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 1, 2076</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 1, 2076, with a magnitude of 0.2746. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 27, 2082</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, February 27, 2082, with a magnitude of 0.9298. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 6, 2086</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, December 6, 2086, with a magnitude of 0.9271. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 1, 2098</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, April 1, 2098, with a magnitude of 0.7984. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. "July 9, 1964 Partial Solar Eclipse". timeanddate. Retrieved 7 August 2024.
  2. "Partial Solar Eclipse of 1964 Jul 09". EclipseWise.com. Retrieved 7 August 2024.
  3. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. "NASA - Catalog of Solar Eclipses of Saros 155". eclipse.gsfc.nasa.gov.