Solar eclipse of May 20, 2069

Last updated
Solar eclipse of May 20, 2069
SE2069May20P.png
Map
Type of eclipse
NaturePartial
Gamma −1.4852
Magnitude 0.0879
Maximum eclipse
Coordinates 68°48′S69°54′W / 68.8°S 69.9°W / -68.8; -69.9
Times (UTC)
Greatest eclipse17:53:18
References
Saros 158 (1 of 70)
Catalog # (SE5000) 9662

A partial solar eclipse will occur at the Moon's descending node of orbit on Monday, May 20, 2069, [1] with a magnitude of 0.0879. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

The partial solar eclipse will be visible for parts of the Antarctic Peninsula and extreme southern Chile and Argentina. This event will mark the beginning of Solar Saros 158.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [2]

May 20, 2069 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact2069 May 20 at 17:14:39.1 UTC
Equatorial Conjunction2069 May 20 at 17:35:14.2 UTC
Greatest Eclipse2069 May 20 at 17:53:17.8 UTC
Ecliptic Conjunction2069 May 20 at 18:07:59.8 UTC
Last Penumbral External Contact2069 May 20 at 18:32:06.9 UTC
May 20, 2069 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.08791
Eclipse Obscuration0.03123
Gamma−1.48519
Sun Right Ascension03h52m35.6s
Sun Declination+20°12'26.5"
Sun Semi-Diameter15'48.3"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension03h53m19.8s
Moon Declination+18°43'03.9"
Moon Semi-Diameter16'32.8"
Moon Equatorial Horizontal Parallax1°00'43.6"
ΔT97.1 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of April–May 2069
April 21
Descending node (new moon)
May 6
Ascending node (full moon)
May 20
Descending node (new moon)
SE2069Apr21P.png Lunar eclipse chart close-2069May06.png SE2069May20P.png
Partial solar eclipse
Solar Saros 120
Total lunar eclipse
Lunar Saros 132
Partial solar eclipse
Solar Saros 158

Eclipses in 2069

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 158

Triad

Solar eclipses of 2065–2069

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]

The partial solar eclipses on February 5, 2065 and August 2, 2065 occur in the previous lunar year eclipse set, and the partial solar eclipses on April 21, 2069 and October 15, 2069 occur in the next lunar year eclipse set.

Solar eclipse series sets from 2065 to 2069
Descending node Ascending node
SarosMapGammaSarosMapGamma
118 July 3, 2065
SE2065Jul03P.png
Partial
1.4619123 December 27, 2065
SE2065Dec27P.png
Partial
−1.0688
128 June 22, 2066
SE2066Jun22A.png
Annular
0.733133 December 17, 2066
SE2066Dec17T.png
Total
−0.4043
138 June 11, 2067
SE2067Jun11A.png
Annular
−0.0387143 December 6, 2067
SE2067Dec06H.png
Hybrid
0.2845
148 May 31, 2068
SE2068May31T.png
Total
−0.797153 November 24, 2068
SE2068Nov24P.png
Partial
1.0299
158 May 20, 2069
SE2069May20P.png
Partial
−1.4852

Saros 158

This eclipse is a part of Saros series 158, repeating every 18 years, 11 days, and containing 70 events. The series will start with a partial solar eclipse on May 20, 2069. It contains total eclipses from August 5, 2195 through August 13, 2808; hybrid eclipses on August 24, 2826 and September 3, 2844; and annular eclipses from September 15, 2862 through February 27, 3133. The series ends at member 70 as a partial eclipse on June 16, 3313. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality will be produced by member 10 at 4 minutes, 43 seconds on August 28, 2231, and the longest duration of annularity will be produced by member 57 at 6 minutes, 7 seconds on January 25, 3079. All eclipses in this series occur at the Moon’s descending node of orbit. [4]

Series members 1–8 occur between 2069 and 2200:
123
SE2069May20P.png
May 20, 2069
SE2087Jun01P.png
June 1, 2087
Saros158 03van70 SE2105Jun12P.jpg
June 12, 2105
456
Saros158 04van70 SE2123Jun23P.jpg
June 23, 2123
Saros158 05van70 SE2141Jul03P.jpg
July 3, 2141
Saros158 06van70 SE2159Jul15P.jpg
July 15, 2159
78
Saros158 07van70 SE2177Jul25P.jpg
July 25, 2177
Saros158 08van70 SE2195Aug05T.jpg
August 5, 2195

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events between May 21, 1993 and May 20, 2069
May 20–21March 9December 25–26October 13–14August 1–2
118120122124126
SE1993May21P.png
May 21, 1993
SE1997Mar09T.png
March 9, 1997
SE2000Dec25P.png
December 25, 2000
SE2004Oct14P.png
October 14, 2004
SE2008Aug01T.png
August 1, 2008
128130132134136
SE2012May20A.png
May 20, 2012
SE2016Mar09T.png
March 9, 2016
SE2019Dec26A.png
December 26, 2019
SE2023Oct14A.png
October 14, 2023
SE2027Aug02T.png
August 2, 2027
138140142144146
SE2031May21A.png
May 21, 2031
SE2035Mar09A.png
March 9, 2035
SE2038Dec26T.png
December 26, 2038
SE2042Oct14A.png
October 14, 2042
SE2046Aug02T.png
August 2, 2046
148150152154156
SE2050May20H.png
May 20, 2050
SE2054Mar09P.png
March 9, 2054
SE2057Dec26T.png
December 26, 2057
SE2061Oct13A.png
October 13, 2061
SE2065Aug02P.png
August 2, 2065
158
SE2069May20P.png
May 20, 2069

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipses on November 16, 2134 (part of Saros 164) and October 16, 2145 (part of Saros 165) are also a part of this series but are not included in the table below.

Series members between 1801 and 2069
SE1807Jun06H.png
June 6, 1807
(Saros 134)
SE1818May05A.gif
May 5, 1818
(Saros 135)
SE1829Apr03T.gif
April 3, 1829
(Saros 136)
SE1840Mar04A.png
March 4, 1840
(Saros 137)
SE1851Feb01A.gif
February 1, 1851
(Saros 138)
SE1861Dec31T.gif
December 31, 1861
(Saros 139)
SE1872Nov30H.gif
November 30, 1872
(Saros 140)
SE1883Oct30A.gif
October 30, 1883
(Saros 141)
SE1894Sep29T.gif
September 29, 1894
(Saros 142)
SE1905Aug30T.png
August 30, 1905
(Saros 143)
SE1916Jul30A.png
July 30, 1916
(Saros 144)
SE1927Jun29T.png
June 29, 1927
(Saros 145)
SE1938May29T.png
May 29, 1938
(Saros 146)
SE1949Apr28P.png
April 28, 1949
(Saros 147)
SE1960Mar27P.png
March 27, 1960
(Saros 148)
SE1971Feb25P.png
February 25, 1971
(Saros 149)
SE1982Jan25P.png
January 25, 1982
(Saros 150)
SE1992Dec24P.png
December 24, 1992
(Saros 151)
SE2003Nov23T.png
November 23, 2003
(Saros 152)
SE2014Oct23P.png
October 23, 2014
(Saros 153)
SE2025Sep21P.png
September 21, 2025
(Saros 154)
SE2036Aug21P.png
August 21, 2036
(Saros 155)
SE2047Jul22P.png
July 22, 2047
(Saros 156)
SE2058Jun21P.png
June 21, 2058
(Saros 157)
SE2069May20P.png
May 20, 2069
(Saros 158)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2069
SE1808Nov18P.gif
November 18, 1808
(Saros 149)
SE1837Oct29P.gif
October 29, 1837
(Saros 150)
SE1866Oct08P.gif
October 8, 1866
(Saros 151)
SE1895Sep18P.gif
September 18, 1895
(Saros 152)
SE1924Aug30P.png
August 30, 1924
(Saros 153)
SE1953Aug09P.png
August 9, 1953
(Saros 154)
SE1982Jul20P.png
July 20, 1982
(Saros 155)
SE2011Jul01P.png
July 1, 2011
(Saros 156)
SE2069May20P.png
May 20, 2069
(Saros 158)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of October 2, 1978</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Monday, October 2, 1978, with a magnitude of 0.6905. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 21, 2069</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, April 21, 2069, with a magnitude of 0.8992. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 21, 2058</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit between Thursday, June 20 and Friday, June 21, 2058, with a magnitude of 0.126. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 16, 2058</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, November 16, 2058, with a magnitude of 0.7644. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 22, 2058</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, May 22, 2058, with a magnitude of 0.4141. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 11, 2062</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Saturday, March 11, 2062, with a magnitude of 0.9331. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 2, 2065</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, August 2, 2065, with a magnitude of 0.4903. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 27, 2065</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Sunday, December 27, 2065, with a magnitude of 0.8769. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 24, 2068</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Saturday, November 24, 2068, with a magnitude of 0.9109. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 31, 2068</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, May 31, 2068, with a magnitude of 1.011. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 4.7 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of June 22, 2066</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, June 22, 2066, with a magnitude of 0.9435. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only about 8 hours after apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of July 3, 2065</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, July 3, 2065, with a magnitude of 0.1638. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 15, 2069</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, October 15, 2069, with a magnitude of 0.5298. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 19, 2072</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, March 19, 2072, with a magnitude of 0.7199. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 12, 2072</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Monday, September 12, 2072, with a magnitude of 1.0558. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 7 hours before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of February 7, 2073</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit between Monday, February 6 and Tuesday, February 7, 2073, with a magnitude of 0.6768. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 1, 2076</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 1, 2076, with a magnitude of 0.2746. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 1, 2076</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, June 1, 2076, with a magnitude of 0.2897. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 26, 2076</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Thursday, November 26, 2076, with a magnitude of 0.7315. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 1, 2087</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, June 1, 2087, with a magnitude of 0.2146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. "May 20, 2069 Partial Solar Eclipse". timeanddate. Retrieved 20 August 2024.
  2. "Partial Solar Eclipse of 2069 May 20". EclipseWise.com. Retrieved 20 August 2024.
  3. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. "NASA - Catalog of Solar Eclipses of Saros 158". eclipse.gsfc.nasa.gov.