Solar eclipse of November 3, 1975

Last updated
Solar eclipse of November 3, 1975
SE1975Nov03P.png
Map
Type of eclipse
NaturePartial
Gamma −1.0248
Magnitude 0.9588
Maximum eclipse
Coordinates 70°24′S161°42′W / 70.4°S 161.7°W / -70.4; -161.7
Times (UTC)
Greatest eclipse13:15:54
References
Saros 123 (51 of 70)
Catalog # (SE5000) 9455

A partial solar eclipse occurred at the Moon's ascending node of orbit on Monday, November 3, 1975, with a magnitude of 0.9588. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

Eclipses in 1975

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 123

Inex

Triad

Solar eclipses of 1975–1978

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [1]

Solar eclipse series sets from 1975 to 1978
Descending node Ascending node
SarosMapGammaSarosMapGamma
118 May 11, 1975
SE1975May11P.png
Partial
1.0647123 November 3, 1975
SE1975Nov03P.png
Partial
−1.0248
128 April 29, 1976
SE1976Apr29A.png
Annular
0.3378133 October 23, 1976
SE1976Oct23T.png
Total
−0.327
138 April 18, 1977
SE1977Apr18A.png
Annular
−0.399143 October 12, 1977
SE1977Oct12T.png
Total
0.3836
148 April 7, 1978
SE1978Apr07P.png
Partial
−1.1081153 October 2, 1978
SE1978Oct02P.png
Partial
1.1616

Saros 123

This eclipse is a part of Saros series 123, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 29, 1074. It contains annular eclipses from July 2, 1182 through April 19, 1651; hybrid eclipses from April 30, 1669 through May 22, 1705; and total eclipses from June 3, 1723 through October 23, 1957. The series ends at member 70 as a partial eclipse on May 31, 2318. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 19 at 8 minutes, 7 seconds on November 9, 1398, and the longest duration of totality was produced by member 42 at 3 minutes, 27 seconds on July 27, 1813. All eclipses in this series occur at the Moon’s ascending node of orbit. [2]

Series members 42–63 occur between 1801 and 2200:
424344
SE1813Jul27T.gif
July 27, 1813
SE1831Aug07T.gif
August 7, 1831
SE1849Aug18T.gif
August 18, 1849
454647
SE1867Aug29T.png
August 29, 1867
SE1885Sep08T.png
September 8, 1885
SE1903Sep21T.png
September 21, 1903
484950
SE1921Oct01T.png
October 1, 1921
SE1939Oct12T.png
October 12, 1939
SE1957Oct23T.png
October 23, 1957
515253
SE1975Nov03P.png
November 3, 1975
SE1993Nov13P.png
November 13, 1993
SE2011Nov25P.png
November 25, 2011
545556
SE2029Dec05P.png
December 5, 2029
SE2047Dec16P.png
December 16, 2047
SE2065Dec27P.png
December 27, 2065
575859
SE2084Jan07P.png
January 7, 2084
Saros123 58van70 SE2102Jan19P.jpg
January 19, 2102
Saros123 59van70 SE2120Jan30P.jpg
January 30, 2120
606162
Saros123 60van70 SE2138Feb09P.jpg
February 9, 2138
Saros123 61van70 SE2156Feb21P.jpg
February 21, 2156
Saros123 62van70 SE2174Mar03P.jpg
March 3, 2174
63
Saros123 63van70 SE2192Mar13P.jpg
March 13, 2192

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

20 eclipse events between June 10, 1964 and August 21, 2036
June 10–11March 28–29January 14–16November 3August 21–22
117119121123125
SE1964Jun10P.png
June 10, 1964
SE1968Mar28P.png
March 28, 1968
SE1972Jan16A.png
January 16, 1972
SE1975Nov03P.png
November 3, 1975
SE1979Aug22A.png
August 22, 1979
127129131133135
SE1983Jun11T.png
June 11, 1983
SE1987Mar29H.png
March 29, 1987
SE1991Jan15A.png
January 15, 1991
SE1994Nov03T.png
November 3, 1994
SE1998Aug22A.png
August 22, 1998
137139141143145
SE2002Jun10A.png
June 10, 2002
SE2006Mar29T.png
March 29, 2006
SE2010Jan15A.png
January 15, 2010
SE2013Nov03H.png
November 3, 2013
SE2017Aug21T.png
August 21, 2017
147149151153155
SE2021Jun10A.png
June 10, 2021
SE2025Mar29P.png
March 29, 2025
SE2029Jan14P.png
January 14, 2029
SE2032Nov03P.png
November 3, 2032
SE2036Aug21P.png
August 21, 2036

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1801Mar14P.png
March 14, 1801
(Saros 107)
SE1812Feb12P.gif
February 12, 1812
(Saros 108)
SE1823Jan12P.gif
January 12, 1823
(Saros 109)
SE1844Nov10P.gif
November 10, 1844
(Saros 111)
SE1877Aug09P.gif
August 9, 1877
(Saros 114)
SE1888Jul09P.gif
July 9, 1888
(Saros 115)
SE1899Jun08P.gif
June 8, 1899
(Saros 116)
SE1910May09T.png
May 9, 1910
(Saros 117)
SE1921Apr08A.png
April 8, 1921
(Saros 118)
SE1932Mar07A.png
March 7, 1932
(Saros 119)
SE1943Feb04T.png
February 4, 1943
(Saros 120)
SE1954Jan05A.png
January 5, 1954
(Saros 121)
SE1964Dec04P.png
December 4, 1964
(Saros 122)
SE1975Nov03P.png
November 3, 1975
(Saros 123)
SE1986Oct03H.png
October 3, 1986
(Saros 124)
SE1997Sep02P.png
September 2, 1997
(Saros 125)
SE2008Aug01T.png
August 1, 2008
(Saros 126)
SE2019Jul02T.png
July 2, 2019
(Saros 127)
SE2030Jun01A.png
June 1, 2030
(Saros 128)
SE2041Apr30T.png
April 30, 2041
(Saros 129)
SE2052Mar30T.png
March 30, 2052
(Saros 130)
SE2063Feb28A.png
February 28, 2063
(Saros 131)
SE2074Jan27A.png
January 27, 2074
(Saros 132)
SE2084Dec27T.png
December 27, 2084
(Saros 133)
SE2095Nov27A.png
November 27, 2095
(Saros 134)
SE2106Oct26A.png
October 26, 2106
(Saros 135)
SE2117Sep26T.png
September 26, 2117
(Saros 136)
SE2128Aug25A.png
August 25, 2128
(Saros 137)
SE2139Jul25A.png
July 25, 2139
(Saros 138)
SE2150Jun25T.png
June 25, 2150
(Saros 139)
SE2161May25A.png
May 25, 2161
(Saros 140)
SE2172Apr23A.png
April 23, 2172
(Saros 141)
SE2183Mar23T.png
March 23, 2183
(Saros 142)
SE2194Feb21A.png
February 21, 2194
(Saros 143)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1802Mar04T.png
March 4, 1802
(Saros 117)
SE1831Feb12A.gif
February 12, 1831
(Saros 118)
SE1860Jan23A.png
January 23, 1860
(Saros 119)
SE1889Jan01T.png
January 1, 1889
(Saros 120)
SE1917Dec14A.png
December 14, 1917
(Saros 121)
SE1946Nov23P.png
November 23, 1946
(Saros 122)
SE1975Nov03P.png
November 3, 1975
(Saros 123)
SE2004Oct14P.png
October 14, 2004
(Saros 124)
SE2033Sep23P.png
September 23, 2033
(Saros 125)
SE2062Sep03P.png
September 3, 2062
(Saros 126)
SE2091Aug15T.png
August 15, 2091
(Saros 127)
SE2120Jul25A.png
July 25, 2120
(Saros 128)
Saros129 59van80 SE2149Jul05T.jpg
July 5, 2149
(Saros 129)
SE2178Jun16T.png
June 16, 2178
(Saros 130)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of October 12, 1996</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 12, 1996, with a magnitude of 0.7575. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 17, 2066</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, December 17, 2066, with a magnitude of 1.0416. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 9, 1986</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, April 9, 1986, with a magnitude of 0.8236. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 20, 1982</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, July 20, 1982, with a magnitude of 0.4643. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 13, 1974</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Friday, December 13, 1974, with a magnitude of 0.8266. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 9, 1967</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, May 9, 1967, with a magnitude of 0.7201. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 2, 1956</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Sunday, December 2, 1956, with a magnitude of 0.8047. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 14, 1953</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, February 14, 1953, with a magnitude of 0.7596. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 11, 2040</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, May 11, 2040, with a magnitude of 0.5306. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 12, 2053</span> Total eclipse

A total solar eclipse will take place at the Moon's ascending node of orbit on Friday, September 12, 2053, with a magnitude of 1.0328. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 1, 2057</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, July 1, 2057, with a magnitude of 0.9464. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 16, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, December 16, 2085, with a magnitude of 0.9971. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. If a moon with same apparent diameter in this eclipse near the Aphelion, it will be Total Solar Eclipse, but in this time of the year, just 2 weeks and 4 days before perihelion, it is an Annular Solar Eclipse.

<span class="mw-page-title-main">Solar eclipse of July 1, 2076</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 1, 2076, with a magnitude of 0.2746. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 27, 2082</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, February 27, 2082, with a magnitude of 0.9298. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 24, 1933</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, February 24, 1933, with a magnitude of 0.9841. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Chile, Argentina, Portuguese Angola, French Equatorial Africa, Belgian Congo, Anglo-Egyptian Sudan, Ethiopia, French Somaliland, southeastern Italian Eritrea, and Mutawakkilite Kingdom of Yemen, Aden Protectorate and Aden Province in British Raj.

<span class="mw-page-title-main">Solar eclipse of April 18, 1931</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, April 18, 1931, with a magnitude of 0.5107. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 10, 1942</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, September 10, 1942, with a magnitude of 0.523. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 30, 1924</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, August 30, 1924, with a magnitude of 0.4245. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 1, 1921</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 1, 1921, with a magnitude of 1.0293. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 23, 1917</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, January 23, 1917, with a magnitude of 0.7254. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  2. "NASA - Catalog of Solar Eclipses of Saros 123". eclipse.gsfc.nasa.gov.