Solar eclipse of October 21, 1949

Last updated
Solar eclipse of October 21, 1949
SE1949Oct21P.png
Map
Type of eclipse
NaturePartial
Gamma −1.027
Magnitude 0.9638
Maximum eclipse
Coordinates 61°30′S107°30′E / 61.5°S 107.5°E / -61.5; 107.5
Times (UTC)
Greatest eclipse21:13:01
References
Saros 152 (9 of 70)
Catalog # (SE5000) 9397

A partial solar eclipse occurred at the Moon's descending node of orbit on Friday, October 21, 1949, [1] with a magnitude of 0.9638. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

A partial eclipse was visible for parts of Australia, Oceania, and Antarctica.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [2]

October 21, 1949 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1949 October 21 at 19:15:33.6 UTC
Greatest Eclipse1949 October 21 at 21:13:00.6 UTC
Ecliptic Conjunction1949 October 21 at 21:23:16.5 UTC
Equatorial Conjunction1949 October 21 at 22:05:37.5 UTC
Last Penumbral External Contact1949 October 21 at 23:10:06.9 UTC
October 21, 1949 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.96380
Eclipse Obscuration0.96320
Gamma−1.02696
Sun Right Ascension13h44m32.4s
Sun Declination-10°48'59.9"
Sun Semi-Diameter16'04.3"
Sun Equatorial Horizontal Parallax08.8"
Moon Right Ascension13h42m37.9s
Moon Declination-11°45'16.5"
Moon Semi-Diameter16'43.7"
Moon Equatorial Horizontal Parallax1°01'23.6"
ΔT29.1 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of October 1949
October 7
Ascending node (full moon)
October 21
Descending node (new moon)
Lunar eclipse chart close-1949Oct07.png SE1949Oct21P.png
Total lunar eclipse
Lunar Saros 126
Partial solar eclipse
Solar Saros 152

Eclipses in 1949

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 152

Inex

Triad

Solar eclipses of 1946–1949

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]

The partial solar eclipses on January 3, 1946 and June 29, 1946 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 1946 to 1949
Ascending node Descending node
SarosMapGammaSarosMapGamma
117 May 30, 1946
SE1946May30P.png
Partial
−1.0711122 November 23, 1946
SE1946Nov23P.png
Partial
1.105
127 May 20, 1947
SE1947May20T.png
Total
−0.3528132 November 12, 1947
SE1947Nov12A.png
Annular
0.3743
137 May 9, 1948
SE1948May09A.png
Annular
0.4133142 November 1, 1948
SE1948Nov01T.png
Total
−0.3517
147 April 28, 1949
SE1949Apr28P.png
Partial
1.2068152 October 21, 1949
SE1949Oct21P.png
Partial
−1.027

Saros 152

This eclipse is a part of Saros series 152, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on July 26, 1805. It contains total eclipses from November 2, 1967 through September 14, 2490; hybrid eclipses from September 26, 2508 through October 17, 2544; and annular eclipses from October 29, 2562 through June 16, 2941. The series ends at member 70 as a partial eclipse on August 20, 3049. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality will be produced by member 30 at 5 minutes, 16 seconds on June 9, 2328, and the longest duration of annularity will be produced by member 53 at 5 minutes, 20 seconds on February 16, 2743. All eclipses in this series occur at the Moon’s descending node of orbit. [4]

Series members 1–22 occur between 1805 and 2200:
123
SE1805Jul26Pb.gif
July 26, 1805
SE1823Aug06P.gif
August 6, 1823
SE1841Aug16P.gif
August 16, 1841
456
SE1859Aug28P.gif
August 28, 1859
SE1877Sep07P.gif
September 7, 1877
SE1895Sep18P.gif
September 18, 1895
789
SE1913Sep30P.png
September 30, 1913
SE1931Oct11P.png
October 11, 1931
SE1949Oct21P.png
October 21, 1949
101112
SE1967Nov02T.png
November 2, 1967
SE1985Nov12T.png
November 12, 1985
SE2003Nov23T.png
November 23, 2003
131415
SE2021Dec04T.png
December 4, 2021
SE2039Dec15T.png
December 15, 2039
SE2057Dec26T.png
December 26, 2057
161718
SE2076Jan06T.png
January 6, 2076
SE2094Jan16T.png
January 16, 2094
Saros152 18van70 SE2112Jan29T.jpg
January 29, 2112
192021
Saros152 19van70 SE2130Feb08T.jpg
February 8, 2130
Saros152 20van70 SE2148Feb19T.jpg
February 19, 2148
Saros152 21van70 SE2166Mar02T.jpg
March 2, 2166
22
Saros152 22van70 SE2184Mar12T.jpg
March 12, 2184

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between March 16, 1866 and August 9, 1953
March 16–17January 1–3October 20–22August 9–10May 27–29
108110112114116
SE1866Mar16P.gif
March 16, 1866
SE1877Aug09P.gif
August 9, 1877
SE1881May27P.gif
May 27, 1881
118120122124126
SE1885Mar16A.gif
March 16, 1885
SE1889Jan01T.png
January 1, 1889
SE1892Oct20P.gif
October 20, 1892
SE1896Aug09T.png
August 9, 1896
SE1900May28T.png
May 28, 1900
128130132134136
SE1904Mar17A.png
March 17, 1904
SE1908Jan03T.png
January 3, 1908
SE1911Oct22A.png
October 22, 1911
SE1915Aug10A.png
August 10, 1915
SE1919May29T.png
May 29, 1919
138140142144146
SE1923Mar17A.png
March 17, 1923
SE1927Jan03A.png
January 3, 1927
SE1930Oct21T.png
October 21, 1930
SE1934Aug10A.png
August 10, 1934
SE1938May29T.png
May 29, 1938
148150152154
SE1942Mar16P.png
March 16, 1942
SE1946Jan03P.png
January 3, 1946
SE1949Oct21P.png
October 21, 1949
SE1953Aug09P.png
August 9, 1953

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 1982
SE1807Nov29H.gif
November 29, 1807
(Saros 139)
SE1818Oct29T.gif
October 29, 1818
(Saros 140)
SE1829Sep28A.gif
September 28, 1829
(Saros 141)
SE1840Aug27T.gif
August 27, 1840
(Saros 142)
SE1851Jul28T.png
July 28, 1851
(Saros 143)
SE1862Jun27P.gif
June 27, 1862
(Saros 144)
SE1873May26P.gif
May 26, 1873
(Saros 145)
SE1884Apr25P.gif
April 25, 1884
(Saros 146)
SE1895Mar26P.gif
March 26, 1895
(Saros 147)
SE1906Feb23P.png
February 23, 1906
(Saros 148)
SE1917Jan23P.png
January 23, 1917
(Saros 149)
SE1927Dec24P.png
December 24, 1927
(Saros 150)
SE1938Nov21P.png
November 21, 1938
(Saros 151)
SE1949Oct21P.png
October 21, 1949
(Saros 152)
SE1960Sep20P.png
September 20, 1960
(Saros 153)
SE1971Aug20P.png
August 20, 1971
(Saros 154)
SE1982Jul20P.png
July 20, 1982
(Saros 155)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1805Jan30P.gif
January 30, 1805
(Saros 147)
SE1834Jan09P.gif
January 9, 1834
(Saros 148)
SE1862Dec21P.gif
December 21, 1862
(Saros 149)
SE1891Dec01P.gif
December 1, 1891
(Saros 150)
SE1920Nov10P.png
November 10, 1920
(Saros 151)
SE1949Oct21P.png
October 21, 1949
(Saros 152)
SE1978Oct02P.png
October 2, 1978
(Saros 153)
SE2007Sep11P.png
September 11, 2007
(Saros 154)
SE2036Aug21P.png
August 21, 2036
(Saros 155)
SE2065Aug02P.png
August 2, 2065
(Saros 156)
SE2094Jul12P.png
July 12, 2094
(Saros 157)
Saros158 04van70 SE2123Jun23P.jpg
June 23, 2123
(Saros 158)
Saros159 02van70 SE2152Jun03P.jpg
June 3, 2152
(Saros 159)
Saros160 01van71 SE2181May13P.jpg
May 13, 2181
(Saros 160)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of February 5, 2000</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon’s descending node of orbit on Saturday, February 5, 2000, with a magnitude of 0.5795. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. It was only visible over Antarctica.

<span class="mw-page-title-main">Solar eclipse of February 27, 2036</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Wednesday, February 27, 2036, with a magnitude of 0.6286. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 3, 2062</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, September 3, 2062, with a magnitude of 0.9749. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 15, 1982</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Wednesday, December 15, 1982, with a magnitude of 0.735. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. Occurring only 2.7 days before apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of April 7, 1978</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Friday, April 7, 1978, with a magnitude of 0.7883. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 22, 1971</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, July 22, 1971, with a magnitude of 0.0689. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. This was the 70th and final solar eclipse from Solar Saros 116.

<span class="mw-page-title-main">Solar eclipse of July 11, 1953</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, July 11, 1953, with a magnitude of 0.2015. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 9, 1953</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, August 9, 1953, with a magnitude of 0.3729. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 4, 2040</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, November 4, 2040, with a magnitude of 0.8074. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 21, 2069</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, April 21, 2069, with a magnitude of 0.8992. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 9, 2054</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Monday, March 9, 2054, with a magnitude of 0.6678. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 16, 2058</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, November 16, 2058, with a magnitude of 0.7644. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 2, 2065</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, August 2, 2065, with a magnitude of 0.4903. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 11, 2070</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, April 10 and Friday, April 11, 2070, with a magnitude of 1.0472. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 19, 2072</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, March 19, 2072, with a magnitude of 0.7199. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 13, 2083</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, August 13, 2083, with a magnitude of 0.6146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 18, 2091</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, February 18, 2091, with a magnitude of 0.6558. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of April 21, 2088</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, April 21, 2088, with a magnitude of 1.0474. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 31, 2090</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, March 31, 2090, with a magnitude of 0.7843. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 1, 2087</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, June 1, 2087, with a magnitude of 0.2146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. "October 21, 1949 Partial Solar Eclipse". timeanddate. Retrieved 4 August 2024.
  2. "Partial Solar Eclipse of 1949 Oct 21". EclipseWise.com. Retrieved 4 August 2024.
  3. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. "NASA - Catalog of Solar Eclipses of Saros 152". eclipse.gsfc.nasa.gov.