Solar eclipse of October 24, 2060

Last updated
Solar eclipse of October 24, 2060
SE2060Oct24A.png
Map
Type of eclipse
NatureAnnular
Gamma −0.2625
Magnitude 0.9277
Maximum eclipse
Duration486 s (8 min 6 s)
Coordinates 25°48′S28°06′E / 25.8°S 28.1°E / -25.8; 28.1
Max. width of band281 km (175 mi)
Times (UTC)
Greatest eclipse9:24:10
References
Saros 144 (19 of 70)
Catalog # (SE5000) 9643

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, October 24, 2060, [1] with a magnitude of 0.9277. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only about 18 hours before apogee (on October 25, 2060, at 1:20 UTC), the Moon's apparent diameter will be smaller. [2]

Contents

The path of annularity will be visible from parts of southern Guinea, Sierra Leone, Liberia, Côte d'Ivoire, the Annobón Natural Reserve, Angola, northeastern Namibia, Botswana, and South Africa. A partial solar eclipse will also be visible for parts of eastern Brazil, Africa, and Antarctica.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]

October 24, 2060 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact2060 October 24 at 06:19:40.5 UTC
First Umbral External Contact2060 October 24 at 07:26:08.2 UTC
First Central Line2060 October 24 at 07:29:18.5 UTC
First Umbral Internal Contact2060 October 24 at 07:32:29.2 UTC
First Penumbral Internal Contact2060 October 24 at 08:43:57.6 UTC
Greatest Eclipse2060 October 24 at 09:24:10.4 UTC
Ecliptic Conjunction2060 October 24 at 09:27:20.1 UTC
Equatorial Conjunction2060 October 24 at 09:39:25.2 UTC
Greatest Duration2060 October 24 at 09:41:30.5 UTC
Last Penumbral Internal Contact2060 October 24 at 10:04:00.7 UTC
Last Umbral Internal Contact2060 October 24 at 11:15:41.4 UTC
Last Central Line2060 October 24 at 11:18:52.9 UTC
Last Umbral External Contact2060 October 24 at 11:22:03.9 UTC
Last Penumbral External Contact2060 October 24 at 12:28:35.3 UTC
October 24, 2060 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.92766
Eclipse Obscuration0.86055
Gamma−0.26249
Sun Right Ascension13h58m17.5s
Sun Declination-12°04'28.2"
Sun Semi-Diameter16'04.8"
Sun Equatorial Horizontal Parallax08.8"
Moon Right Ascension13h57m52.2s
Moon Declination-12°17'09.7"
Moon Semi-Diameter14'42.1"
Moon Equatorial Horizontal Parallax0°53'57.3"
ΔT91.0 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of October–November 2060
October 9
Ascending node (full moon)
October 24
Descending node (new moon)
November 8
Ascending node (full moon)
SE2060Oct24A.png Lunar eclipse chart close-2060Nov08.png
Penumbral lunar eclipse
Lunar Saros 118
Annular solar eclipse
Solar Saros 144
Penumbral lunar eclipse
Lunar Saros 156

Eclipses in 2060

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 144

Inex

Triad

Solar eclipses of 2058–2061

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]

The partial solar eclipse on June 21, 2058 occurs in the previous lunar year eclipse set.

Solar eclipse series sets from 2058 to 2061
Ascending node Descending node
SarosMapGammaSarosMapGamma
119 May 22, 2058
SE2058May22P.png
Partial
−1.3194124 November 16, 2058
SE2058Nov16P.png
Partial
1.1224
129 May 11, 2059
SE2059May11T.png
Total
−0.508134 November 5, 2059
SE2059Nov05A.png
Annular
0.4454
139 April 30, 2060
SE2060Apr30T.png
Total
0.2422144 October 24, 2060
SE2060Oct24A.png
Annular
−0.2625
149 April 20, 2061
SE2061Apr20T.png
Total
0.9578154 October 13, 2061
SE2061Oct13A.png
Annular
−0.9639

Saros 144

This eclipse is a part of Saros series 144, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on April 11, 1736. It contains annular eclipses from July 7, 1880 through August 27, 2565. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on May 5, 2980. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 51 at 9 minutes, 52 seconds on December 29, 2168. All eclipses in this series occur at the Moon’s descending node of orbit. [5]

Series members 5–26 occur between 1801 and 2200:
567
SE1808May25P.png
May 25, 1808
SE1826Jun05P.png
June 5, 1826
SE1844Jun16P.png
June 16, 1844
8910
SE1862Jun27P.png
June 27, 1862
SE1880Jul07A.png
July 7, 1880
SE1898Jul18A.png
July 18, 1898
111213
SE1916Jul30A.png
July 30, 1916
SE1934Aug10A.png
August 10, 1934
SE1952Aug20A.png
August 20, 1952
141516
SE1970Aug31A.png
August 31, 1970
SE1988Sep11A.png
September 11, 1988
SE2006Sep22A.png
September 22, 2006
171819
SE2024Oct02A.png
October 2, 2024
SE2042Oct14A.png
October 14, 2042
SE2060Oct24A.png
October 24, 2060
202122
SE2078Nov04A.png
November 4, 2078
SE2096Nov15A.png
November 15, 2096
SE2114Nov27A.png
November 27, 2114
232425
SE2132Dec07A.png
December 7, 2132
SE2150Dec19A.png
December 19, 2150
SE2168Dec29A.png
December 29, 2168
26
SE2187Jan09A.png
January 9, 2187

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between June 1, 2011 and October 24, 2098
May 31–June 1March 19–20January 5–6October 24–25August 12–13
118120122124126
SE2011Jun01P.png
June 1, 2011
SE2015Mar20T.png
March 20, 2015
SE2019Jan06P.png
January 6, 2019
SE2022Oct25P.png
October 25, 2022
SE2026Aug12T.png
August 12, 2026
128130132134136
SE2030Jun01A.png
June 1, 2030
SE2034Mar20T.png
March 20, 2034
SE2038Jan05A.png
January 5, 2038
SE2041Oct25A.png
October 25, 2041
SE2045Aug12T.png
August 12, 2045
138140142144146
SE2049May31A.png
May 31, 2049
SE2053Mar20A.png
March 20, 2053
SE2057Jan05T.png
January 5, 2057
SE2060Oct24A.png
October 24, 2060
SE2064Aug12T.png
August 12, 2064
148150152154156
SE2068May31T.png
May 31, 2068
SE2072Mar19P.png
March 19, 2072
SE2076Jan06T.png
January 6, 2076
SE2079Oct24A.png
October 24, 2079
SE2083Aug13P.png
August 13, 2083
158160162164
SE2087Jun01P.png
June 1, 2087
SE2098Oct24P.png
October 24, 2098

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1809Oct09T.gif
October 9, 1809
(Saros 121)
SE1820Sep07A.png
September 7, 1820
(Saros 122)
SE1831Aug07T.gif
August 7, 1831
(Saros 123)
SE1842Jul08T.png
July 8, 1842
(Saros 124)
SE1853Jun06A.gif
June 6, 1853
(Saros 125)
SE1864May06H.gif
May 6, 1864
(Saros 126)
SE1875Apr06T.png
April 6, 1875
(Saros 127)
SE1886Mar05A.gif
March 5, 1886
(Saros 128)
SE1897Feb01A.gif
February 1, 1897
(Saros 129)
SE1908Jan03T.png
January 3, 1908
(Saros 130)
SE1918Dec03A.png
December 3, 1918
(Saros 131)
SE1929Nov01A.png
November 1, 1929
(Saros 132)
SE1940Oct01T.png
October 1, 1940
(Saros 133)
SE1951Sep01A.png
September 1, 1951
(Saros 134)
SE1962Jul31A.png
July 31, 1962
(Saros 135)
SE1973Jun30T.png
June 30, 1973
(Saros 136)
SE1984May30A.png
May 30, 1984
(Saros 137)
SE1995Apr29A.png
April 29, 1995
(Saros 138)
SE2006Mar29T.png
March 29, 2006
(Saros 139)
SE2017Feb26A.png
February 26, 2017
(Saros 140)
SE2028Jan26A.png
January 26, 2028
(Saros 141)
SE2038Dec26T.png
December 26, 2038
(Saros 142)
SE2049Nov25H.png
November 25, 2049
(Saros 143)
SE2060Oct24A.png
October 24, 2060
(Saros 144)
SE2071Sep23T.png
September 23, 2071
(Saros 145)
SE2082Aug24T.png
August 24, 2082
(Saros 146)
SE2093Jul23A.png
July 23, 2093
(Saros 147)
SE2104Jun22T.png
June 22, 2104
(Saros 148)
SE2115May24T.png
May 24, 2115
(Saros 149)
Saros150 23van71 SE2126Apr22A.jpg
April 22, 2126
(Saros 150)
Saros151 21van72 SE2137Mar21A.jpg
March 21, 2137
(Saros 151)
Saros152 20van70 SE2148Feb19T.jpg
February 19, 2148
(Saros 152)
Saros153 17van70 SE2159Jan19A.jpg
January 19, 2159
(Saros 153)
Saros154 15van71 SE2169Dec18A.jpg
December 18, 2169
(Saros 154)
Saros155 15van71 SE2180Nov17T.jpg
November 17, 2180
(Saros 155)
Saros156 11van69 SE2191Oct18A.jpg
October 18, 2191
(Saros 156)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1829Apr03T.gif
April 3, 1829
(Saros 136)
SE1858Mar15A.gif
March 15, 1858
(Saros 137)
SE1887Feb22A.png
February 22, 1887
(Saros 138)
SE1916Feb03T.png
February 3, 1916
(Saros 139)
SE1945Jan14A.png
January 14, 1945
(Saros 140)
SE1973Dec24A.png
December 24, 1973
(Saros 141)
SE2002Dec04T.png
December 4, 2002
(Saros 142)
SE2031Nov14H.png
November 14, 2031
(Saros 143)
SE2060Oct24A.png
October 24, 2060
(Saros 144)
SE2089Oct04T.png
October 4, 2089
(Saros 145)
SE2118Sep15T.png
September 15, 2118
(Saros 146)
Saros147 30van80 SE2147Aug26A.jpg
August 26, 2147
(Saros 147)
Saros148 30van75 SE2176Aug04T.jpg
August 4, 2176
(Saros 148)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of April 30, 2060</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, April 30, 2060, with a magnitude of 1.066. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 18 hours after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of May 31, 2049</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, May 31, 2049, with a magnitude of 0.9631. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.1 days before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of November 14, 2031</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, November 14, 2031, with a magnitude of 1.0106. It is a hybrid event, with portions of its central path near sunrise and sunset as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.1 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of May 21, 2031</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Wednesday, May 21, 2031, with a magnitude of 0.9589. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.8 days before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of December 24, 1973</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Monday, December 24, 1973, with a magnitude of 0.9174. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 1.25 days before apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of October 14, 2042</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, October 14, 2042, with a magnitude of 0.93. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only about 9 hours before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of July 12, 2056</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 12, 2056, with a magnitude of 0.9878. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.8 days after apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of December 6, 2067</span> Hybrid eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 11, 2067</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, June 11, 2067, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 31, 2071</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, March 31, 2071, with a magnitude of 0.9919. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 23, 2071</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, September 23, 2071, with a magnitude of 1.0333. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 16, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, December 16, 2085, with a magnitude of 0.9971. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. If a moon with same apparent diameter in this eclipse near the Aphelion, it will be Total Solar Eclipse, but in this time of the year, just 2 weeks and 4 days before perihelion, it is an Annular Solar Eclipse.

<span class="mw-page-title-main">Solar eclipse of January 27, 2074</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, January 27, 2074, with a magnitude of 0.9798. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 4, 2078</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, November 4, 2078, with a magnitude of 0.9255. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The path of annularity will cross the Pacific Ocean, South America, and the Atlantic Ocean.

<span class="mw-page-title-main">Solar eclipse of March 10, 2100</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit between Wednesday, March 10 and Thursday, March 11, 2100, with a magnitude of 0.9338. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide. The path of annularity will move from Indonesia at sunrise, over the islands of Hawaii and Maui around noon, and through the northwestern United States at sunset.

<span class="mw-page-title-main">Solar eclipse of February 7, 2092</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, February 7, 2092, with a magnitude of 0.984. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 3, 2092</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, August 3, 2092, with a magnitude of 0.9794. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide.

<span class="mw-page-title-main">Solar eclipse of October 4, 2089</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, October 4, 2089, with a magnitude of 1.0333. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 10, 2089</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, April 10, 2089, with a magnitude of 0.9919. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 22, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

References

  1. "October 24, 2060 Annular Solar Eclipse". timeanddate. Retrieved 17 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 17 August 2024.
  3. "Annular Solar Eclipse of 2060 Oct 24". EclipseWise.com. Retrieved 17 August 2024.
  4. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. "NASA - Catalog of Solar Eclipses of Saros 144". eclipse.gsfc.nasa.gov.