Solar eclipse of September 12, 1931

Last updated
Solar eclipse of September 12, 1931
SE1931Sep12P.png
Map
Type of eclipse
NaturePartial
Gamma 1.506
Magnitude 0.0471
Maximum eclipse
Coordinates 61°12′N152°48′W / 61.2°N 152.8°W / 61.2; -152.8
Times (UTC)
Greatest eclipse4:41:25
References
Saros 114 (72 of 72)
Catalog # (SE5000) 9355

A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, September 12, 1931, [1] with a magnitude of 0.0471. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

A partial eclipse was visible for parts of Alaska. This was the 72nd and final event from Solar Saros 114.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [2]

September 12, 1931 Solar Eclipse Times
EventTime (UTC)
Equatorial Conjunction1931 September 12 at 03:17:27.4 UTC
First Penumbral External Contact1931 September 12 at 04:13:32.8 UTC
Ecliptic Conjunction1931 September 12 at 04:26:43.8 UTC
Greatest Eclipse1931 September 12 at 04:41:24.8 UTC
Last Penumbral External Contact1931 September 12 at 05:09:49.8 UTC
September 12, 1931 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.04713
Eclipse Obscuration0.01234
Gamma1.50603
Sun Right Ascension11h17m33.8s
Sun Declination+04°33'58.3"
Sun Semi-Diameter15'53.5"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension11h20m30.0s
Moon Declination+05°54'53.5"
Moon Semi-Diameter16'41.5"
Moon Equatorial Horizontal Parallax1°01'15.6"
ΔT23.9 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of September–October 1931
September 12
Descending node (new moon)
September 26
Ascending node (full moon)
October 11
Descending node (new moon)
SE1931Sep12P.png Lunar eclipse chart close-1931Sep26.png SE1931Oct11P.png
Partial solar eclipse
Solar Saros 114
Total lunar eclipse
Lunar Saros 126
Partial solar eclipse
Solar Saros 152

Eclipses in 1931

Metonic

Tzolkinex

Tritos

Solar Saros 114

Triad

Solar eclipses of 1931–1935

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]

The partial solar eclipses on April 18, 1931 and October 11, 1931 occur in the previous lunar year eclipse set, and the solar eclipses on January 5, 1935 (partial), June 30, 1935 (partial), and December 25, 1935 (annular) occur in the next lunar year eclipse set.

Solar eclipse series sets from 1931 to 1935
Descending node Ascending node
SarosMapGammaSarosMapGamma
114 September 12, 1931
SE1931Sep12P.png
Partial
1.506119 March 7, 1932
SE1932Mar07A.png
Annular
−0.9673
124 August 31, 1932
SE1932Aug31T.png
Total
0.8307129 February 24, 1933
SE1933Feb24A.png
Annular
−0.2191
134 August 21, 1933
SE1933Aug21A.png
Annular
0.0869139 February 14, 1934
SE1934Feb14T.png
Total
0.4868
144 August 10, 1934
SE1934Aug10A.png
Annular
−0.689149 February 3, 1935
SE1935Feb03P.png
Partial
1.1438
154 July 30, 1935
SE1935Jul30P.png
Partial
−1.4259

Saros 114

This eclipse is a part of Saros series 114, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on July 23, 651 AD. It contains annular eclipses from February 3, 976 AD through June 11, 1192; hybrid eclipses from June 22, 1210 through December 1, 1480; and total eclipses from December 13, 1498 through June 15, 1787. The series ends at member 72 as a partial eclipse on September 12, 1931. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 20 at 4 minutes, 33 seconds on February 13, 994 AD, and the longest duration of totality was produced by member 59 at 4 minutes, 18 seconds on April 21, 1697. All eclipses in this series occur at the Moon’s descending node of orbit. [4]

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between September 12, 1931 and July 1, 2011
September 11–12June 30–July 1April 17–19February 4–5November 22–23
114116118120122
SE1931Sep12P.png
September 12, 1931
SE1935Jun30P.png
June 30, 1935
SE1939Apr19A.png
April 19, 1939
SE1943Feb04T.png
February 4, 1943
SE1946Nov23P.png
November 23, 1946
124126128130132
SE1950Sep12T.png
September 12, 1950
SE1954Jun30T.png
June 30, 1954
SE1958Apr19A.png
April 19, 1958
SE1962Feb05T.png
February 5, 1962
SE1965Nov23A.png
November 23, 1965
134136138140142
SE1969Sep11A.png
September 11, 1969
SE1973Jun30T.png
June 30, 1973
SE1977Apr18A.png
April 18, 1977
SE1981Feb04A.png
February 4, 1981
SE1984Nov22T.png
November 22, 1984
144146148150152
SE1988Sep11A.png
September 11, 1988
SE1992Jun30T.png
June 30, 1992
SE1996Apr17P.png
April 17, 1996
SE2000Feb05P.png
February 5, 2000
SE2003Nov23T.png
November 23, 2003
154156
SE2007Sep11P.png
September 11, 2007
SE2011Jul01P.png
July 1, 2011

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1866 and 2200
SE1866Mar16P.gif
March 16, 1866
(Saros 108)
SE1898Dec13P.gif
December 13, 1898
(Saros 111)
SE1931Sep12P.png
September 12, 1931
(Saros 114)
SE1942Aug12P.png
August 12, 1942
(Saros 115)
SE1953Jul11P.png
July 11, 1953
(Saros 116)
SE1964Jun10P.png
June 10, 1964
(Saros 117)
SE1975May11P.png
May 11, 1975
(Saros 118)
SE1986Apr09P.png
April 9, 1986
(Saros 119)
SE1997Mar09T.png
March 9, 1997
(Saros 120)
SE2008Feb07A.png
February 7, 2008
(Saros 121)
SE2019Jan06P.png
January 6, 2019
(Saros 122)
SE2029Dec05P.png
December 5, 2029
(Saros 123)
SE2040Nov04P.png
November 4, 2040
(Saros 124)
SE2051Oct04P.png
October 4, 2051
(Saros 125)
SE2062Sep03P.png
September 3, 2062
(Saros 126)
SE2073Aug03T.png
August 3, 2073
(Saros 127)
SE2084Jul03A.png
July 3, 2084
(Saros 128)
SE2095Jun02T.png
June 2, 2095
(Saros 129)
SE2106May03T.png
May 3, 2106
(Saros 130)
SE2117Apr02A.png
April 2, 2117
(Saros 131)
SE2128Mar01A.png
March 1, 2128
(Saros 132)
SE2139Jan30T.png
January 30, 2139
(Saros 133)
SE2149Dec30A.png
December 30, 2149
(Saros 134)
SE2160Nov27A.png
November 27, 2160
(Saros 135)
SE2171Oct29T.png
October 29, 2171
(Saros 136)
SE2182Sep27A.png
September 27, 2182
(Saros 137)
SE2193Aug26A.png
August 26, 2193
(Saros 138)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1844 and 2200
SE1844Nov10P.png
November 10, 1844
(Saros 111)
SE1931Sep12P.png
September 12, 1931
(Saros 114)
SE2018Jul13P.png
July 13, 2018
(Saros 117)
SE2047Jun23P.png
June 23, 2047
(Saros 118)
SE2076Jun01P.png
June 1, 2076
(Saros 119)
Saros120 66van71 SE2105May14P.jpg
May 14, 2105
(Saros 120)
Saros121 67van71 SE2134Apr24P.jpg
April 24, 2134
(Saros 121)
Saros122 66van70 SE2163Apr03P.jpg
April 3, 2163
(Saros 122)
Saros123 63van70 SE2192Mar13P.jpg
March 13, 2192
(Saros 123)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of October 12, 1996</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 12, 1996, with a magnitude of 0.7575. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 31, 2049</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, May 31, 2049, with a magnitude of 0.9631. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 22, 1971</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, July 22, 1971, with a magnitude of 0.0689. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. This was the 70th and final solar eclipse from Solar Saros 116.

<span class="mw-page-title-main">Solar eclipse of March 27, 1960</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, March 27, 1960, with a magnitude of 0.7058. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. This eclipse was observable from parts of the Antarctic Ocean and Indian Ocean.

<span class="mw-page-title-main">Solar eclipse of August 20, 1952</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Wednesday, August 20, 1952, with a magnitude of 0.942. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Peru including the capital city Lima, northeastern Chile, Bolivia including the constitutional capital Sucre and seat of government La Paz, Argentina, Paraguay, southern Brazil and Uruguay.

<span class="mw-page-title-main">Solar eclipse of September 22, 2052</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, September 22, 2052, with a magnitude of 0.9734. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 1, 2057</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, July 1, 2057, with a magnitude of 0.9464. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 3, 2054</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, August 3, 2054, with a magnitude of 0.0655. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. This event will be the 71st and final event of Solar Saros 117.

<span class="mw-page-title-main">Solar eclipse of October 13, 2061</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, October 13, 2061, with a magnitude of 0.9469. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 17, 2064</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, February 17, 2064, with a magnitude of 0.9262. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 20, 2069</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Monday, May 20, 2069, with a magnitude of 0.0879. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 24, 2079</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, October 24, 2079, with a magnitude of 0.9484. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 13, 2083</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, August 13, 2083, with a magnitude of 0.6146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 10, 1934</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, August 10, 1934, with a magnitude of 0.9436. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 1.4 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of April 28, 1949</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, April 28, 1949, with a magnitude of 0.6092. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 21, 1949</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Friday, October 21, 1949, with a magnitude of 0.9638. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 12, 1942</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, August 12, 1942, with a magnitude of 0.0561. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. This was the 72nd of 72 solar eclipses in Saros 115 and the final eclipse.

<span class="mw-page-title-main">Solar eclipse of March 16, 1942</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Monday, March 16, 1942, with a magnitude of 0.6393. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 10, 1942</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, September 10, 1942, with a magnitude of 0.523. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 24, 1927</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Saturday, December 24, 1927, with a magnitude of 0.549. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. "September 12, 1931 Partial Solar Eclipse". timeanddate. Retrieved 3 August 2024.
  2. "Partial Solar Eclipse of 1931 Sep 12". EclipseWise.com. Retrieved 3 August 2024.
  3. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. "NASA - Catalog of Solar Eclipses of Saros 114". eclipse.gsfc.nasa.gov.