Solar eclipse of January 26, 2028

Last updated
Solar eclipse of January 26, 2028
SE2028Jan26A.png
Map
Type of eclipse
NatureAnnular
Gamma 0.3901
Magnitude 0.9208
Maximum eclipse
Duration627 s (10 min 27 s)
Coordinates 3°00′N51°30′W / 3°N 51.5°W / 3; -51.5
Max. width of band323 km (201 mi)
Times (UTC)
Greatest eclipse15:08:59
References
Saros 141 (24 of 70)
Catalog # (SE5000) 9569

An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, January 26, 2028, [1] with a magnitude of 0.9208. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2 days before apogee (on January 28, 2028, at 15:30 UTC), the Moon's apparent diameter will be smaller. [2]

Contents

The path of annularity will pass through Ecuador, Peru, northern Brazil, and French Guiana. It will then travel across the Atlantic Ocean and end in southern Portugal, northern Morocco, and southern Spain. A partial eclipse will be visible over much of central and northern South America, Central America, the Caribbean, eastern North America and Western Europe, and West Africa.

Images

SE2028Jan26A.gif

Details of the antumbra in some places or cities

Solar Eclipse of January 26, 2028
Country or TerritoryPlace or CityStart

of
partial
eclipse
(Local Time)

Start of
annular
eclipse (Local Time)
End of
annular
eclipse (Local Time)
Duration of
annular
eclipse
End of
partial
eclipse (Local Time)
Maximum darknessMagnitude
Flag of Ecuador.svg  Ecuador Puerto Ayora, Galapagos Islands 06:12:40 (sunrise)07:22:0107:27:415 min 40 s09:00:0883,2%0,912
Flag of Peru.svg  Peru Piura, Piura Province 07:09:0508:32:5908:36:233 min 24 s10:21:4383,7%0,915
Flag of Ecuador.svg  Ecuador Machala, El Oro Province 07:10:0508:33:0008:41:018 min 01 s10:26:1283,7%0,915
Flag of Ecuador.svg  Ecuador Loja, Loja Province 07:10:1608:33:3508:42:148 min 39 s10:27:5383,8%0,915
Flag of Ecuador.svg  Ecuador Cuenca, Azuay Province 07:10:5308:35:4708:42:146 min 27 s10:29:5183,8%0,915
Flag of Peru.svg  Peru Iquitos, Loreto Province 07:15:0508:45:4908:54:278 min 38 s10:48:1784,1%0,917
Flag of Colombia.svg  Colombia Leticia, Amazonas 07:18:2608:52:5809:02:299 min 31 s10:59:0684,2%0,918
Flag of Brazil.svg  Brazil Manaus, Amazonas 08:34:5810:24:5310:31:455 min 22 s12:33:2884,7%0,920
Flag of Brazil.svg  Brazil Oiapoque, Amapa 10:04:3212:04:3712:13:048 min 27 s14:08:0284,8%0,921
Flag of Portugal.svg  Portugal Funchal, Madeira 15:19:5816:46:4216:53:425 min 48 s18:08:1583,1%0,912
Flag of Portugal.svg  Portugal Faro 15:32:2116:51:4216:58:447 min 02 s17:45:03 (sunset)82,7%0,910
Flag of Morocco.svg  Morocco Tangier 15:34:4616:55:0016:57:482 min 48 s17:39:20 (sunset)82,7%0,909
Flag of Spain.svg  Spain Seville 16:34:2817:52:1817:59:337 min 15 s18:36:26 (sunset)82,7%0,909
Flag of Spain.svg  Spain Albacete 16:38:0017:53:1218:00:187 min 06 s18:16:14 (sunset)82,5%0,908
Flag of Spain.svg  Spain Valencia 16:39:0417:53:2418:00:277 min 03 s18:09:10 (sunset)82,4%0,908
Flag of Gibraltar.svg  Gibraltar Gibraltar 16:35:1417:54:3117:58:303 min 59 s18:36:36 (sunset)82,7%0,909

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]

January 26, 2028 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact2028 January 26 at 12:07:52.6 UTC
First Umbral External Contact2028 January 26 at 13:16:03.3 UTC
First Central Line2028 January 26 at 13:19:37.5 UTC
First Umbral Internal Contact2028 January 26 at 13:23:12.8 UTC
First Penumbral Internal Contact2028 January 26 at 14:49:10.7 UTC
Greatest Duration2028 January 26 at 14:54:20.6 UTC
Greatest Eclipse2028 January 26 at 15:08:58.8 UTC
Ecliptic Conjunction2028 January 26 at 15:13:40.4 UTC
Equatorial Conjunction2028 January 26 at 15:25:58.3 UTC
Last Penumbral Internal Contact2028 January 26 at 15:28:20.7 UTC
Last Umbral Internal Contact2028 January 26 at 16:54:32.7 UTC
Last Central Line2028 January 26 at 16:58:09.5 UTC
Last Umbral External Contact2028 January 26 at 17:01:45.1 UTC
Last Penumbral External Contact2028 January 26 at 18:10:00.6 UTC
January 26, 2028 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.92080
Eclipse Obscuration0.84787
Gamma0.39014
Sun Right Ascension20h34m14.2s
Sun Declination-18°43'33.0"
Sun Semi-Diameter16'14.6"
Sun Equatorial Horizontal Parallax08.9"
Moon Right Ascension20h33m43.7s
Moon Declination-18°23'46.3"
Moon Semi-Diameter14'45.1"
Moon Equatorial Horizontal Parallax0°54'08.3"
ΔT73.0 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of January 2028
January 12
Descending node (full moon)
January 26
Ascending node (new moon)
Lunar eclipse chart close-2028Jan12.png SE2028Jan26A.png
Partial lunar eclipse
Lunar Saros 115
Annular solar eclipse
Solar Saros 141

Eclipses in 2028

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 141

Inex

Triad

Solar eclipses of 2026–2029

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]

The partial solar eclipses on June 12, 2029 and December 5, 2029 occur in the next lunar year eclipse set.

Solar eclipse series sets from 2026 to 2029
Ascending node Descending node
SarosMapGammaSarosMapGamma
121 February 17, 2026
SE2026Feb17A.png
Annular
−0.97427126 August 12, 2026
SE2026Aug12T.png
Total
0.89774
131 February 6, 2027
SE2027Feb06A.png
Annular
−0.29515136 August 2, 2027
SE2027Aug02T.png
Total
0.14209
141 January 26, 2028
SE2028Jan26A.png
Annular
0.39014146 July 22, 2008
SE2028Jul22T.png
Total
−0.60557
151 January 14, 2029
SE2029Jan14P.png
Partial
1.05532156 July 11, 2029
SE2029Jul11P.png
Partial
−1.41908

Saros 141

This eclipse is a part of Saros series 141, repeating every 18 years, 11 days, and containing 70 events. The series started with a partial solar eclipse on May 19, 1613. It contains annular eclipses from August 4, 1739 through October 14, 2640. There are no hybrid or total eclipses in this set. The series ends at member 70 as a partial eclipse on June 13, 2857. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 20 at 12 minutes, 9 seconds on December 14, 1955. All eclipses in this series occur at the Moon’s ascending node of orbit. [5]

Series members 12–33 occur between 1801 and 2200:
121314
SE1811Sep17A.png
September 17, 1811
SE1829Sep28A.png
September 28, 1829
SE1847Oct09A.png
October 9, 1847
151617
SE1865Oct19A.png
October 19, 1865
SE1883Oct30A.png
October 30, 1883
SE1901Nov11A.png
November 11, 1901
181920
SE1919Nov22A.png
November 22, 1919
SE1937Dec02A.png
December 2, 1937
SE1955Dec14A.png
December 14, 1955
212223
SE1973Dec24A.png
December 24, 1973
SE1992Jan04A.png
January 4, 1992
SE2010Jan15A.png
January 15, 2010
242526
SE2028Jan26A.png
January 26, 2028
SE2046Feb05A.png
February 5, 2046
SE2064Feb17A.png
February 17, 2064
272829
SE2082Feb27A.png
February 27, 2082
SE2100Mar10A.png
March 10, 2100
SE2118Mar22A.png
March 22, 2118
303132
SE2136Apr01A.png
April 1, 2136
SE2154Apr12A.png
April 12, 2154
SE2172Apr23A.png
April 23, 2172
33
SE2190May04A.png
May 4, 2190

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events between June 21, 1982 and June 21, 2058
June 21April 8–9January 26November 13–14September 1–2
117119121123125
SE1982Jun21P.png
June 21, 1982
SE1986Apr09P.png
April 9, 1986
SE1990Jan26A.png
January 26, 1990
SE1993Nov13P.png
November 13, 1993
SE1997Sep02P.png
September 2, 1997
127129131133135
SE2001Jun21T.png
June 21, 2001
SE2005Apr08H.png
April 8, 2005
SE2009Jan26A.png
January 26, 2009
SE2012Nov13T.png
November 13, 2012
SE2016Sep01A.png
September 1, 2016
137139141143145
SE2020Jun21A.png
June 21, 2020
SE2024Apr08T.png
April 8, 2024
SE2028Jan26A.png
January 26, 2028
SE2031Nov14H.png
November 14, 2031
SE2035Sep02T.png
September 2, 2035
147149151153155
SE2039Jun21A.png
June 21, 2039
SE2043Apr09T.png
April 9, 2043
SE2047Jan26P.png
January 26, 2047
SE2050Nov14P.png
November 14, 2050
SE2054Sep02P.png
September 2, 2054
157
SE2058Jun21P.png
June 21, 2058

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1809Oct09T.gif
October 9, 1809
(Saros 121)
SE1820Sep07A.png
September 7, 1820
(Saros 122)
SE1831Aug07T.gif
August 7, 1831
(Saros 123)
SE1842Jul08T.png
July 8, 1842
(Saros 124)
SE1853Jun06A.gif
June 6, 1853
(Saros 125)
SE1864May06H.gif
May 6, 1864
(Saros 126)
SE1875Apr06T.png
April 6, 1875
(Saros 127)
SE1886Mar05A.gif
March 5, 1886
(Saros 128)
SE1897Feb01A.gif
February 1, 1897
(Saros 129)
SE1908Jan03T.png
January 3, 1908
(Saros 130)
SE1918Dec03A.png
December 3, 1918
(Saros 131)
SE1929Nov01A.png
November 1, 1929
(Saros 132)
SE1940Oct01T.png
October 1, 1940
(Saros 133)
SE1951Sep01A.png
September 1, 1951
(Saros 134)
SE1962Jul31A.png
July 31, 1962
(Saros 135)
SE1973Jun30T.png
June 30, 1973
(Saros 136)
SE1984May30A.png
May 30, 1984
(Saros 137)
SE1995Apr29A.png
April 29, 1995
(Saros 138)
SE2006Mar29T.png
March 29, 2006
(Saros 139)
SE2017Feb26A.png
February 26, 2017
(Saros 140)
SE2028Jan26A.png
January 26, 2028
(Saros 141)
SE2038Dec26T.png
December 26, 2038
(Saros 142)
SE2049Nov25H.png
November 25, 2049
(Saros 143)
SE2060Oct24A.png
October 24, 2060
(Saros 144)
SE2071Sep23T.png
September 23, 2071
(Saros 145)
SE2082Aug24T.png
August 24, 2082
(Saros 146)
SE2093Jul23A.png
July 23, 2093
(Saros 147)
SE2104Jun22T.png
June 22, 2104
(Saros 148)
SE2115May24T.png
May 24, 2115
(Saros 149)
Saros150 23van71 SE2126Apr22A.jpg
April 22, 2126
(Saros 150)
Saros151 21van72 SE2137Mar21A.jpg
March 21, 2137
(Saros 151)
Saros152 20van70 SE2148Feb19T.jpg
February 19, 2148
(Saros 152)
Saros153 17van70 SE2159Jan19A.jpg
January 19, 2159
(Saros 153)
Saros154 15van71 SE2169Dec18A.jpg
December 18, 2169
(Saros 154)
Saros155 15van71 SE2180Nov17T.jpg
November 17, 2180
(Saros 155)
Saros156 11van69 SE2191Oct18A.jpg
October 18, 2191
(Saros 156)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1825Jun16H.png
June 16, 1825
(Saros 134)
SE1854May26A.png
May 26, 1854
(Saros 135)
SE1883May06T.png
May 6, 1883
(Saros 136)
SE1912Apr17H.png
April 17, 1912
(Saros 137)
SE1941Mar27A.png
March 27, 1941
(Saros 138)
SE1970Mar07T.png
March 7, 1970
(Saros 139)
SE1999Feb16A.png
February 16, 1999
(Saros 140)
SE2028Jan26A.png
January 26, 2028
(Saros 141)
SE2057Jan05T.png
January 5, 2057
(Saros 142)
SE2085Dec16A.png
December 16, 2085
(Saros 143)
SE2114Nov27A.png
November 27, 2114
(Saros 144)
SE2143Nov07T.png
November 7, 2143
(Saros 145)
SE2172Oct17H.png
October 17, 2172
(Saros 146)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of February 16, 1999</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon’s descending node of orbit on Tuesday, February 16, 1999, with a magnitude of 0.9928. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 7.9 days after apogee and 4.3 days before perigee.

<span class="mw-page-title-main">Solar eclipse of January 5, 2038</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, January 5, 2038, with a magnitude of 0.9728. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 31, 2049</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, May 31, 2049, with a magnitude of 0.9631. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 9, 2035</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit between Friday, March 9 and Saturday, March 10, 2035, with a magnitude of 0.9919. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter will be near the average diameter because it will occur 7.6 days after apogee and 5.1 days before perigee.

<span class="mw-page-title-main">Solar eclipse of February 5, 2046</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Monday, February 5, 2046, with a magnitude of 0.9232. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 2, 2038</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, July 2, 2038, with a magnitude of 0.9911. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 26, 2038</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Saturday, December 25 and Sunday, December 26, 2038, with a magnitude of 1.0268. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 21, 2039</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, June 21, 2039, with a magnitude of 0.9454. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. This eclipse will start only a few hours after the northern solstice and most of the path will go across areas with midnight sun. For mainland Norway, Sweden and Belarus, it will be the first central solar eclipse since June 1954.

<span class="mw-page-title-main">Solar eclipse of August 11, 1961</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, August 11, 1961, with a magnitude of 0.9375. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only about 7 hours after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of August 2, 2046</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, August 2, 2046, with a magnitude of 1.0531. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is greater than the Sun's, blocking all direct sunlight. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 5, 2057</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Friday, January 5, 2057, with a magnitude of 1.0287. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 27, 2095</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, November 27, 2095, with a magnitude of 0.933. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 1, 2057</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, July 1, 2057, with a magnitude of 0.9464. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 13, 2061</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, October 13, 2061, with a magnitude of 0.9469. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 17, 2064</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, February 17, 2064, with a magnitude of 0.9262. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 11, 2070</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, April 10 and Friday, April 11, 2070, with a magnitude of 1.0472. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 24, 2079</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, October 24, 2079, with a magnitude of 0.9484. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 27, 2082</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, February 27, 2082, with a magnitude of 0.9298. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 23, 2093</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Thursday, July 23, 2093, with a magnitude of 0.9463. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 27, 1941</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Thursday, March 27, 1941, with a magnitude of 0.9355. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.6 days before apogee, the Moon's apparent diameter was smaller.

References

  1. "January 26, 2028 Annular Solar Eclipse". timeanddate. Retrieved 13 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 13 August 2024.
  3. "Annular Solar Eclipse of 2028 Jan 26". EclipseWise.com. Retrieved 13 August 2024.
  4. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. "NASA - Catalog of Solar Eclipses of Saros 141". eclipse.gsfc.nasa.gov.