Solar eclipse of May 11, 2059

Last updated
Solar eclipse of May 11, 2059
SE2059May11T.png
Map
Type of eclipse
NatureTotal
Gamma −0.508
Magnitude 1.0242
Maximum eclipse
Duration143 s (2 min 23 s)
Coordinates 10°42′S100°24′W / 10.7°S 100.4°W / -10.7; -100.4
Max. width of band95 km (59 mi)
Times (UTC)
Greatest eclipse19:22:16
References
Saros 129 (54 of 80)
Catalog # (SE5000) 9640

A total solar eclipse will occur at the Moon's ascending node of orbit on Sunday, May 11, 2059, [1] with a magnitude of 1.0242. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.5 days after perigee (on May 8, 2059, at 7:40 UTC), the Moon's apparent diameter will be larger. [2]

Contents

The path of totality will be visible from parts of Ecuador, Peru, extreme southern Colombia, and Brazil. A partial solar eclipse will also be visible for parts of eastern Oceania, South America, Central America, and the Caribbean.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]

May 11, 2059 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact2059 May 11 at 16:45:12.3 UTC
First Umbral External Contact2059 May 11 at 17:49:14.5 UTC
First Central Line2059 May 11 at 17:49:34.7 UTC
First Umbral Internal Contact2059 May 11 at 17:49:54.9 UTC
Equatorial Conjunction2059 May 11 at 19:01:24.2 UTC
Ecliptic Conjunction2059 May 11 at 19:16:52.0 UTC
Greatest Eclipse2059 May 11 at 19:22:15.6 UTC
Greatest Duration2059 May 11 at 19:24:12.0 UTC
Last Umbral Internal Contact2059 May 11 at 20:54:52.7 UTC
Last Central Line2059 May 11 at 20:55:10.2 UTC
Last Umbral External Contact2059 May 11 at 20:55:27.8 UTC
Last Penumbral External Contact2059 May 11 at 21:59:32.9 UTC
May 11, 2059 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.02418
Eclipse Obscuration1.04894
Gamma−0.50795
Sun Right Ascension03h14m47.9s
Sun Declination+18°02'08.6"
Sun Semi-Diameter15'50.2"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension03h15m32.3s
Moon Declination+17°34'20.5"
Moon Semi-Diameter15'59.6"
Moon Equatorial Horizontal Parallax0°58'41.8"
ΔT90.0 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of May 2059
May 11
Ascending node (new moon)
May 27
Descending node (full moon)
SE2059May11T.png Lunar eclipse chart close-2059May27.png
Total solar eclipse
Solar Saros 129
Partial lunar eclipse
Lunar Saros 141

Eclipses in 2059

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 129

Inex

Triad

Solar eclipses of 2058–2061

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]

The partial solar eclipse on June 21, 2058 occurs in the previous lunar year eclipse set.

Solar eclipse series sets from 2058 to 2061
Ascending node Descending node
SarosMapGammaSarosMapGamma
119 May 22, 2058
SE2058May22P.png
Partial
−1.3194124 November 16, 2058
SE2058Nov16P.png
Partial
1.1224
129 May 11, 2059
SE2059May11T.png
Total
−0.508134 November 5, 2059
SE2059Nov05A.png
Annular
0.4454
139 April 30, 2060
SE2060Apr30T.png
Total
0.2422144 October 24, 2060
SE2060Oct24A.png
Annular
−0.2625
149 April 20, 2061
SE2061Apr20T.png
Total
0.9578154 October 13, 2061
SE2061Oct13A.png
Annular
−0.9639

Saros 129

This eclipse is a part of Saros series 129, repeating every 18 years, 11 days, and containing 80 events. The series started with a partial solar eclipse on October 3, 1103. It contains annular eclipses from May 6, 1464 through March 18, 1969; hybrid eclipses from March 29, 1987 through April 20, 2023; and total eclipses from April 30, 2041 through July 26, 2185. The series ends at member 80 as a partial eclipse on February 21, 2528. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 34 at 5 minutes, 10 seconds on October 4, 1698, and the longest duration of totality will be produced by member 58 at 3 minutes, 43 seconds on June 25, 2131. All eclipses in this series occur at the Moon’s ascending node of orbit. [5]

Series members 40–61 occur between 1801 and 2200:
404142
SE1806Dec10A.gif
December 10, 1806
SE1824Dec20Am.gif
December 20, 1824
SE1842Dec31A.gif
December 31, 1842
434445
SE1861Jan11A.gif
January 11, 1861
SE1879Jan22A.gif
January 22, 1879
SE1897Feb01A.gif
February 1, 1897
464748
SE1915Feb14A.png
February 14, 1915
SE1933Feb24A.png
February 24, 1933
SE1951Mar07A.png
March 7, 1951
495051
SE1969Mar18A.png
March 18, 1969
SE1987Mar29H.png
March 29, 1987
SE2005Apr08H.png
April 8, 2005
525354
SE2023Apr20H.png
April 20, 2023
SE2041Apr30T.png
April 30, 2041
SE2059May11T.png
May 11, 2059
555657
SE2077May22T.png
May 22, 2077
SE2095Jun02T.png
June 2, 2095
Saros129 57van80 SE2113Jun13T.jpg
June 13, 2113
585960
Saros129 58van80 SE2131Jun25T.jpg
June 25, 2131
Saros129 59van80 SE2149Jul05T.jpg
July 5, 2149
Saros129 60van80 SE2167Jul16T.jpg
July 16, 2167
61
Saros129 61van80 SE2185Jul26T.jpg
July 26, 2185

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events between July 23, 2036 and July 23, 2112
July 23–24May 11February 27–28December 16–17October 4–5
117119121123125
SE2036Jul23P.png
July 23, 2036
SE2040May11P.png
May 11, 2040
SE2044Feb28A.png
February 28, 2044
SE2047Dec16P.png
December 16, 2047
SE2051Oct04P.png
October 4, 2051
127129131133135
SE2055Jul24T.png
July 24, 2055
SE2059May11T.png
May 11, 2059
SE2063Feb28A.png
February 28, 2063
SE2066Dec17T.png
December 17, 2066
SE2070Oct04A.png
October 4, 2070
137139141143145
SE2074Jul24A.png
July 24, 2074
SE2078May11T.png
May 11, 2078
SE2082Feb27A.png
February 27, 2082
SE2085Dec16A.png
December 16, 2085
SE2089Oct04T.png
October 4, 2089
147149151153155
SE2093Jul23A.png
July 23, 2093
SE2097May11T.png
May 11, 2097
SE2101Feb28A.png
February 28, 2101
Saros153 14van70 SE2104Dec17A.jpg
December 17, 2104
Saros155 11van71 SE2108Oct05T.jpg
October 5, 2108
157
Saros157 04van70 SE2112Jul23P.jpg
July 23, 2112

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1819Mar25P.gif
March 25, 1819
(Saros 107)
SE1830Feb23P.gif
February 23, 1830
(Saros 108)
SE1841Jan22P.gif
January 22, 1841
(Saros 109)
SE1862Nov21P.gif
November 21, 1862
(Saros 111)
SE1895Aug20P.gif
August 20, 1895
(Saros 114)
SE1906Jul21P.png
July 21, 1906
(Saros 115)
SE1917Jun19P.png
June 19, 1917
(Saros 116)
SE1928May19T.png
May 19, 1928
(Saros 117)
SE1939Apr19A.png
April 19, 1939
(Saros 118)
SE1950Mar18A.png
March 18, 1950
(Saros 119)
SE1961Feb15T.png
February 15, 1961
(Saros 120)
SE1972Jan16A.png
January 16, 1972
(Saros 121)
SE1982Dec15P.png
December 15, 1982
(Saros 122)
SE1993Nov13P.png
November 13, 1993
(Saros 123)
SE2004Oct14P.png
October 14, 2004
(Saros 124)
SE2015Sep13P.png
September 13, 2015
(Saros 125)
SE2026Aug12T.png
August 12, 2026
(Saros 126)
SE2037Jul13T.png
July 13, 2037
(Saros 127)
SE2048Jun11A.png
June 11, 2048
(Saros 128)
SE2059May11T.png
May 11, 2059
(Saros 129)
SE2070Apr11T.png
April 11, 2070
(Saros 130)
SE2081Mar10A.png
March 10, 2081
(Saros 131)
SE2092Feb07A.png
February 7, 2092
(Saros 132)
SE2103Jan08T.png
January 8, 2103
(Saros 133)
SE2113Dec08A.png
December 8, 2113
(Saros 134)
SE2124Nov06A.png
November 6, 2124
(Saros 135)
SE2135Oct07T.png
October 7, 2135
(Saros 136)
SE2146Sep06A.png
September 6, 2146
(Saros 137)
SE2157Aug05A.png
August 5, 2157
(Saros 138)
SE2168Jul05T.png
July 5, 2168
(Saros 139)
SE2179Jun05A.png
June 5, 2179
(Saros 140)
SE2190May04A.png
May 4, 2190
(Saros 141)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1827Oct20H.gif
October 20, 1827
(Saros 121)
SE1856Sep29A.gif
September 29, 1856
(Saros 122)
SE1885Sep08T.png
September 8, 1885
(Saros 123)
SE1914Aug21T.png
August 21, 1914
(Saros 124)
SE1943Aug01A.png
August 1, 1943
(Saros 125)
SE1972Jul10T.png
July 10, 1972
(Saros 126)
SE2001Jun21T.png
June 21, 2001
(Saros 127)
SE2030Jun01A.png
June 1, 2030
(Saros 128)
SE2059May11T.png
May 11, 2059
(Saros 129)
SE2088Apr21T.png
April 21, 2088
(Saros 130)
SE2117Apr02A.png
April 2, 2117
(Saros 131)
SE2146Mar12A.png
March 12, 2146
(Saros 132)
SE2175Feb21T.png
February 21, 2175
(Saros 133)

Notes

  1. "May 11, 2059 Total Solar Eclipse". timeanddate. Retrieved 17 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 17 August 2024.
  3. "Total Solar Eclipse of 2059 May 11". EclipseWise.com. Retrieved 17 August 2024.
  4. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. "NASA - Catalog of Solar Eclipses of Saros 129". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of March 30, 2052</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Saturday, March 30, 2052, with a magnitude of 1.0466. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.5 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of August 24, 2063</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Friday, August 24, 2063, with a magnitude of 1.075. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 25, 2030</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Monday, November 25, 2030, with a magnitude of 1.0468. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 14 hours before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of December 5, 2048</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, December 5, 2048, with a magnitude of 1.044. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is greater than the Sun's, blocking all direct sunlight. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 16.5 hours before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of December 17, 2066</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, December 17, 2066, with a magnitude of 1.0416. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 30, 2041</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, April 30, 2041, with a magnitude of 1.0189. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.75 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of October 25, 2041</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit between Thursday, October 24 and Friday, October 25, 2041, with a magnitude of 0.9467. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.3 days after apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of May 20, 2050</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Friday, May 20, 2050, with a magnitude of 1.0038. It is a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 5.2 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of July 24, 2055</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, July 24, 2055, with a magnitude of 1.0359. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.9 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of November 5, 2059</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Wednesday, November 5, 2059, with a magnitude of 0.9417. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.2 days after apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of November 15, 2077</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, November 15, 2077, with a magnitude of 0.9371. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partially obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The path of annularity will cross North America and South America. This will be the 47th solar eclipse of Saros cycle 134. A small annular eclipse will cover only 93.71% of the Sun in a very broad path, 262 km wide at maximum, and will last 7 minutes and 54 seconds. Occurring only 4 days after apogee, the Moon's apparent diameter is smaller.

<span class="mw-page-title-main">Solar eclipse of October 4, 2070</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, October 4, 2070, with a magnitude of 0.9731. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 22, 2052</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit between Sunday, September 22 and Monday, September 23, 2052, with a magnitude of 0.9734. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.9 days before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of February 28, 2063</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, February 28, 2063, with a magnitude of 0.9293. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 31, 2068</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, May 31, 2068, with a magnitude of 1.011. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 22, 2066</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, June 22, 2066, with a magnitude of 0.9435. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 11, 2070</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, April 10 and Friday, April 11, 2070, with a magnitude of 1.0472. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 22, 2077</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, May 22, 2077, with a magnitude of 1.029. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 14, 2088</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Thursday, October 14, 2088, with a magnitude of 0.9727. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 21, 2088</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, April 21, 2088, with a magnitude of 1.0474. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

References