Solar eclipse of October 10, 1912

Last updated
Solar eclipse of October 10, 1912
SE1912Oct10T.png
Map
Type of eclipse
NatureTotal
Gamma −0.4149
Magnitude 1.0229
Maximum eclipse
Duration115 s (1 min 55 s)
Coordinates 28°06′S40°06′W / 28.1°S 40.1°W / -28.1; -40.1
Max. width of band85 km (53 mi)
Times (UTC)
Greatest eclipse13:36:14
References
Saros 142 (17 of 72)
Catalog # (SE5000) 9309

A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, October 10, 1912, [1] [2] [3] [4] with a magnitude of 1.0229. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.8 days after perigee (on October 7, 1912, at 18:50 UTC), the Moon's apparent diameter was larger. [5]

Contents

Totality was visible from Ecuador, Colombia, northern tip of Peru and Brazil. A partial eclipse was visible for parts of Central America, the Caribbean, South America, Antarctica, and Southern Africa.

Observation

German physicist, mathematician and astronomer Johann Georg von Soldner calculated the gravitational lens effect in an article published in 1801. Albert Einstein got similar values in 1911, and proposed verifying it by observing the stars around the sun. The only feasible way at that time was observing during a total solar eclipse, when the sun is totally blocked. This was the first total solar eclipse after that. [6] Local teams from Brazil and international teams from the United Kingdom, France, the German Empire, Argentina and Chile made attempts in Brazil. However, it rained throughout almost the whole path of totality, and all teams failed. [7]

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [8]

October 10, 1912 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1912 October 10 at 10:57:15.4 UTC
First Umbral External Contact1912 October 10 at 11:58:42.7 UTC
First Central Line1912 October 10 at 11:58:57.3 UTC
First Umbral Internal Contact1912 October 10 at 11:59:12.0 UTC
First Penumbral Internal Contact1912 October 10 at 13:16:22.6 UTC
Greatest Duration1912 October 10 at 13:35:21.8 UTC
Greatest Eclipse1912 October 10 at 13:36:13.5 UTC
Ecliptic Conjunction1912 October 10 at 13:40:37.9 UTC
Last Penumbral Internal Contact1912 October 10 at 13:55:30.8 UTC
Equatorial Conjunction1912 October 10 at 14:00:01.6 UTC
Last Umbral Internal Contact1912 October 10 at 15:13:03.4 UTC
Last Central Line1912 October 10 at 15:13:15.6 UTC
Last Umbral External Contact1912 October 10 at 15:13:27.7 UTC
Last Penumbral External Contact1912 October 10 at 16:15:07.6 UTC
October 10, 1912 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.02287
Eclipse Obscuration1.04625
Gamma−0.41487
Sun Right Ascension13h02m12.2s
Sun Declination-06°38'03.1"
Sun Semi-Diameter16'01.4"
Sun Equatorial Horizontal Parallax08.8"
Moon Right Ascension13h01m25.4s
Moon Declination-06°59'39.3"
Moon Semi-Diameter16'08.7"
Moon Equatorial Horizontal Parallax0°59'15.3"
ΔT14.3 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of September–October 1912
September 26
Ascending node (full moon)
October 10
Descending node (new moon)
Lunar eclipse chart close-1912Sep26.png SE1912Oct10T.png
Partial lunar eclipse
Lunar Saros 116
Total solar eclipse
Solar Saros 142

Eclipses in 1912

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 142

Inex

Triad

Solar eclipses of 1910–1913

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [9]

The partial solar eclipse on August 31, 1913 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1910 to 1913
Ascending node Descending node
SarosMapGammaSarosMapGamma
117 May 9, 1910
SE1910May09T.png
Total
−0.9437122 November 2, 1910
SE1910Nov02P.png
Partial
1.0603
127 April 28, 1911
SE1911Apr28T.png
Total
−0.2294132 October 22, 1911
SE1911Oct22A.png
Annular
0.3224
137 April 17, 1912
SE1912Apr17H.png
Hybrid
0.528142 October 10, 1912
SE1912Oct10T.png
Total
−0.4149
147 April 6, 1913
SE1913Apr06P.png
Partial
1.3147152 September 30, 1913
SE1913Sep30P.png
Partial
−1.1005

Saros 142

This eclipse is a part of Saros series 142, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on April 17, 1624. It contains a hybrid eclipse on July 14, 1768, and total eclipses from July 25, 1786 through October 29, 2543. There are no annular eclipses in this set. The series ends at member 72 as a partial eclipse on June 5, 2904. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality will be produced by member 38 at 6 minutes, 34 seconds on May 28, 2291. All eclipses in this series occur at the Moon’s descending node of orbit. [10]

Series members 11–32 occur between 1801 and 2200:
111213
SE1804Aug05T.png
August 5, 1804
SE1822Aug16T.png
August 16, 1822
SE1840Aug27T.png
August 27, 1840
141516
SE1858Sep07T.png
September 7, 1858
SE1876Sep17T.png
September 17, 1876
SE1894Sep29T.png
September 29, 1894
171819
SE1912Oct10T.png
October 10, 1912
SE1930Oct21T.png
October 21, 1930
SE1948Nov01T.png
November 1, 1948
202122
SE1966Nov12T.png
November 12, 1966
SE1984Nov22T.png
November 22, 1984
SE2002Dec04T.png
December 4, 2002
232425
SE2020Dec14T.png
December 14, 2020
SE2038Dec26T.png
December 26, 2038
SE2057Jan05T.png
January 5, 2057
262728
SE2075Jan16T.png
January 16, 2075
SE2093Jan27T.png
January 27, 2093
SE2111Feb08T.png
February 8, 2111
293031
SE2129Feb18T.png
February 18, 2129
SE2147Mar02T.png
March 2, 2147
SE2165Mar12T.png
March 12, 2165
32
SE2183Mar23T.png
March 23, 2183

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between March 5, 1848 and July 30, 1935
March 5–6December 22–24October 9–11July 29–30May 17–18
108110112114116
SE1848Mar05P.gif
March 5, 1848
SE1859Jul29P.gif
July 29, 1859
SE1863May17P.gif
May 17, 1863
118120122124126
SE1867Mar06A.gif
March 6, 1867
SE1870Dec22T.png
December 22, 1870
SE1874Oct10An.gif
October 10, 1874
SE1878Jul29T.png
July 29, 1878
SE1882May17T.png
May 17, 1882
128130132134136
SE1886Mar05A.gif
March 5, 1886
SE1889Dec22T.png
December 22, 1889
SE1893Oct09A.png
October 9, 1893
SE1897Jul29A.png
July 29, 1897
SE1901May18T.png
May 18, 1901
138140142144146
SE1905Mar06A.png
March 6, 1905
SE1908Dec23H.png
December 23, 1908
SE1912Oct10T.png
October 10, 1912
SE1916Jul30A.png
July 30, 1916
SE1920May18P.png
May 18, 1920
148150152154
SE1924Mar05P.png
March 5, 1924
SE1927Dec24P.png
December 24, 1927
SE1931Oct11P.png
October 11, 1931
SE1935Jul30P.png
July 30, 1935

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2087
SE1803Aug17A.png
August 17, 1803
(Saros 132)
SE1814Jul17T.png
July 17, 1814
(Saros 133)
SE1825Jun16H.png
June 16, 1825
(Saros 134)
SE1836May15A.png
May 15, 1836
(Saros 135)
SE1847Apr15T.png
April 15, 1847
(Saros 136)
SE1858Mar15A.png
March 15, 1858
(Saros 137)
SE1869Feb11A.png
February 11, 1869
(Saros 138)
SE1880Jan11T.png
January 11, 1880
(Saros 139)
SE1890Dec12H.png
December 12, 1890
(Saros 140)
SE1901Nov11A.png
November 11, 1901
(Saros 141)
SE1912Oct10T.png
October 10, 1912
(Saros 142)
SE1923Sep10T.png
September 10, 1923
(Saros 143)
SE1934Aug10A.png
August 10, 1934
(Saros 144)
SE1945Jul09T.png
July 9, 1945
(Saros 145)
SE1956Jun08T.png
June 8, 1956
(Saros 146)
SE1967May09P.png
May 9, 1967
(Saros 147)
SE1978Apr07P.png
April 7, 1978
(Saros 148)
SE1989Mar07P.png
March 7, 1989
(Saros 149)
SE2000Feb05P.png
February 5, 2000
(Saros 150)
SE2011Jan04P.png
January 4, 2011
(Saros 151)
SE2021Dec04T.png
December 4, 2021
(Saros 152)
SE2032Nov03P.png
November 3, 2032
(Saros 153)
SE2043Oct03A.png
October 3, 2043
(Saros 154)
SE2054Sep02P.png
September 2, 2054
(Saros 155)
SE2065Aug02P.png
August 2, 2065
(Saros 156)
SE2076Jul01P.png
July 1, 2076
(Saros 157)
SE2087Jun01P.png
June 1, 2087
(Saros 158)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1825Dec09H.png
December 9, 1825
(Saros 139)
SE1854Nov20H.png
November 20, 1854
(Saros 140)
SE1883Oct30A.gif
October 30, 1883
(Saros 141)
SE1912Oct10T.png
October 10, 1912
(Saros 142)
SE1941Sep21T.png
September 21, 1941
(Saros 143)
SE1970Aug31A.png
August 31, 1970
(Saros 144)
SE1999Aug11T.png
August 11, 1999
(Saros 145)
SE2028Jul22T.png
July 22, 2028
(Saros 146)
SE2057Jul01A.png
July 1, 2057
(Saros 147)
SE2086Jun11T.png
June 11, 2086
(Saros 148)
SE2115May24T.png
May 24, 2115
(Saros 149)
Saros150 24van71 SE2144May03A.jpg
May 3, 2144
(Saros 150)
Saros151 23van72 SE2173Apr12A.jpg
April 12, 2173
(Saros 151)

Notes

  1. "October 10, 1912 Total Solar Eclipse". timeanddate. Retrieved 31 July 2024.
  2. "SOLAR ECLIPSE. Disappointed Scientists". Manchester Evening News. Manchester, Greater Manchester, England. 1912-10-11. p. 6. Retrieved 2023-11-03 via Newspapers.com.
  3. "TOTAL ECLIPSE OF THE SUN OCT. 10". Martinsburg Statesman-Democrat. Martinsburg, West Virginia. 1912-10-11. p. 2. Retrieved 2023-11-03 via Newspapers.com.
  4. "SOLAR ECLIPSE FAILURE". Leicester Mercury. Leicester, Leicestershire, England. 1912-10-11. p. 5. Retrieved 2023-11-03 via Newspapers.com.
  5. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 31 July 2024.
  6. Helmut Hornung (26 May 2015). "A solar eclipse sheds light on physics". Phys.org. Archived from the original on 26 November 2020.
  7. "GENERAL NOTES". Astronomical Society of the Pacific. December 1912. pp. 288–290. Archived from the original on 28 August 2019.
  8. "Total Solar Eclipse of 1912 Oct 10". EclipseWise.com. Retrieved 31 July 2024.
  9. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  10. "NASA - Catalog of Solar Eclipses of Saros 142". eclipse.gsfc.nasa.gov.

Additional reading

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of February 16, 1999</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon’s descending node of orbit on Tuesday, February 16, 1999, with a magnitude of 0.9928. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in the southern Indian Ocean including the Prince Edward Islands, South Africa, and Australia.

<span class="mw-page-title-main">Solar eclipse of March 20, 2034</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Monday, March 20, 2034, with a magnitude of 1.0458. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality will be visible in 13 countries: from east to west, Benin, Nigeria, Cameroon, Chad, Sudan, Egypt, Saudi Arabia, Kuwait, Iran, Afghanistan, Pakistan, India, and China. The eclipse passes through Iran only a few hours before the vernal Spring equinox, marking the beginning of the Persian New Year.

<span class="mw-page-title-main">Solar eclipse of November 12, 1985</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Tuesday, November 12, 1985, with a magnitude of 1.0388. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. It was visible only near Antarctica.

<span class="mw-page-title-main">Solar eclipse of November 22, 1984</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, November 22, 1984, with a magnitude of 1.0237. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in Indonesia, Papua New Guinea and southern Pacific Ocean. West of the International Date Line the eclipse took place on November 23, including all land in the path of totality. Occurring only 2.1 days after perigee, the Moon's apparent diameter was fairly larger.

<span class="mw-page-title-main">Solar eclipse of November 25, 2030</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Monday, November 25, 2030, with a magnitude of 1.0468. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality will be visible in Namibia, Botswana, South Africa, Lesotho, and Australia.

<span class="mw-page-title-main">Solar eclipse of December 5, 2048</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, December 5, 2048, with a magnitude of 1.044. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight and turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region spanning thousands of kilometres.

<span class="mw-page-title-main">Solar eclipse of October 23, 1976</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 23, 1976, with a magnitude of 1.0572. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. This total solar eclipse began at sunrise in Tanzania near the border with Burundi, with the path of totality passing just north of the large Tanzanian city of Dar es Salaam. It then crossed the Indian Ocean, passing St. Pierre Island, Providence Atoll and Farquhar Atoll of Seychelles before making landfall in southeastern Australia. The largest city that saw totality was Melbourne. After leaving the Australian mainland, the path of totality left the Earth's surface just north of the north island of New Zealand.

<span class="mw-page-title-main">Solar eclipse of September 23, 2090</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, September 23, 2090, with a magnitude of 1.0562. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 13, 2037</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Monday, July 13, 2037, with a magnitude of 1.0413. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality will pass through the centre of Brisbane and the Gold Coast, as well as Geraldton, Western Australia.

<span class="mw-page-title-main">Solar eclipse of September 12, 1950</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Tuesday, September 12, 1950, with a magnitude of 1.0182. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from eastern Soviet Union on September 12 local time and the whole Semichi Islands in Alaska on September 11 local time.

<span class="mw-page-title-main">Solar eclipse of July 24, 2055</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, July 24, 2055, with a magnitude of 1.0359. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 5, 2057</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Friday, January 5, 2057, with a magnitude of 1.0287. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 21, 1930</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Tuesday, October 21, 1930, with a magnitude of 1.023. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from Niuafoʻou in Tonga, Chile, and a tiny part of Santa Cruz Province, Argentina.

<span class="mw-page-title-main">Solar eclipse of May 31, 2068</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, May 31, 2068, with a magnitude of 1.011. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 11, 2070</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, April 10 and Friday, April 11, 2070, with a magnitude of 1.0472. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 11, 2097</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, May 11, 2097, with a magnitude of 1.0538. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 16, 2094</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Saturday, January 16, 2094, with a magnitude of 1.0342. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 21, 2088</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, April 21, 2088, with a magnitude of 1.0474. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 1, 1921</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 1, 1921, with a magnitude of 1.0293. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 8, 1921</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Friday, April 8, 1921, with a magnitude of 0.9753. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from northern Scotland, northwestern tip of Norway, and islands in the Arctic Ocean in Russian SFSR.

References