Solar eclipse of October 12, 1977

Last updated
Solar eclipse of October 12, 1977
SE1977Oct12T.png
Map
Type of eclipse
NatureTotal
Gamma 0.3836
Magnitude 1.0269
Maximum eclipse
Duration157 s (2 min 37 s)
Coordinates 14°06′N123°36′W / 14.1°N 123.6°W / 14.1; -123.6
Max. width of band99 km (62 mi)
Times (UTC)
Greatest eclipse20:27:27
References
Saros 143 (21 of 72)
Catalog # (SE5000) 9459

A total solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, October 12, 1977, [1] with a magnitude of 1.0269. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.6 days before perigee (on October 15, 1977, at 10:00 UTC), the Moon's apparent diameter was larger. [2]

Contents

Totality was visible in the Pacific Ocean, Colombia and Venezuela. A partial eclipse was visible for parts of North America, Central America, the Caribbean, and northern South America.

Observations

The National Geographic Society funded an expedition by sea led by Jay Pasachoff from Williams College, Massachusetts to the northeast Pacific Ocean to observe the total eclipse. The team took images of the sky and corona during the totality phase as well as corona spectrum and infrared images. [3]

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [4]

October 12, 1977 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1977 October 12 at 17:48:24.0 UTC
First Umbral External Contact1977 October 12 at 18:48:59.6 UTC
First Central Line1977 October 12 at 18:49:18.4 UTC
First Umbral Internal Contact1977 October 12 at 18:49:37.3 UTC
First Penumbral Internal Contact1977 October 12 at 20:01:41.4 UTC
Equatorial Conjunction1977 October 12 at 20:15:17.1 UTC
Greatest Eclipse1977 October 12 at 20:27:27.3 UTC
Greatest Duration1977 October 12 at 20:30:55.5 UTC
Ecliptic Conjunction1977 October 12 at 20:31:29.7 UTC
Last Penumbral Internal Contact1977 October 12 at 20:53:33.8 UTC
Last Umbral Internal Contact1977 October 12 at 22:05:23.4 UTC
Last Central Line1977 October 12 at 22:05:44.5 UTC
Last Umbral External Contact1977 October 12 at 22:06:05.6 UTC
Last Penumbral External Contact1977 October 12 at 23:06:31.5 UTC
October 12, 1977 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.02694
Eclipse Obscuration1.05462
Gamma0.38363
Sun Right Ascension13h11m36.7s
Sun Declination-07°35'30.0"
Sun Semi-Diameter16'01.8"
Sun Equatorial Horizontal Parallax08.8"
Moon Right Ascension13h12m03.0s
Moon Declination-07°13'40.8"
Moon Semi-Diameter16'12.7"
Moon Equatorial Horizontal Parallax0°59'29.8"
ΔT48.3 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of September–October 1977
September 27
Descending node (full moon)
October 12
Ascending node (new moon)
Lunar eclipse chart close-1977Sep27.png SE1977Oct12T.png
Penumbral lunar eclipse
Lunar Saros 117
Total solar eclipse
Solar Saros 143

Eclipses in 1977

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 143

Inex

Triad

Solar eclipses of 1975–1978

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [5]

Solar eclipse series sets from 1975 to 1978
Descending node Ascending node
SarosMapGammaSarosMapGamma
118 May 11, 1975
SE1975May11P.png
Partial
1.0647123 November 3, 1975
SE1975Nov03P.png
Partial
−1.0248
128 April 29, 1976
SE1976Apr29A.png
Annular
0.3378133 October 23, 1976
SE1976Oct23T.png
Total
−0.327
138 April 18, 1977
SE1977Apr18A.png
Annular
−0.399143 October 12, 1977
SE1977Oct12T.png
Total
0.3836
148 April 7, 1978
SE1978Apr07P.png
Partial
−1.1081153 October 2, 1978
SE1978Oct02P.png
Partial
1.1616

Saros 143

This eclipse is a part of Saros series 143, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on March 7, 1617. It contains total eclipses from June 24, 1797 through October 24, 1995; hybrid eclipses from November 3, 2013 through December 6, 2067; and annular eclipses from December 16, 2085 through September 16, 2536. The series ends at member 72 as a partial eclipse on April 23, 2897. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 16 at 3 minutes, 50 seconds on August 19, 1887, and the longest duration of annularity will be produced by member 51 at 4 minutes, 54 seconds on September 6, 2518. All eclipses in this series occur at the Moon’s ascending node of orbit. [6]

Series members 12–33 occur between 1801 and 2200:
121314
SE1815Jul06T.png
July 6, 1815
SE1833Jul17T.png
July 17, 1833
SE1851Jul28T.png
July 28, 1851
151617
SE1869Aug07T.png
August 7, 1869
SE1887Aug19T.png
August 19, 1887
SE1905Aug30T.png
August 30, 1905
181920
SE1923Sep10T.png
September 10, 1923
SE1941Sep21T.png
September 21, 1941
SE1959Oct02T.png
October 2, 1959
212223
SE1977Oct12T.png
October 12, 1977
SE1995Oct24T.png
October 24, 1995
SE2013Nov03H.png
November 3, 2013
242526
SE2031Nov14H.png
November 14, 2031
SE2049Nov25H.png
November 25, 2049
SE2067Dec06H.png
December 6, 2067
272829
SE2085Dec16A.png
December 16, 2085
SE2103Dec29A.png
December 29, 2103
SE2122Jan08A.png
January 8, 2122
303132
SE2140Jan20A.png
January 20, 2140
SE2158Jan30A.png
January 30, 2158
SE2176Feb10A.png
February 10, 2176
33
SE2194Feb21A.png
February 21, 2194

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

22 eclipse events between December 24, 1916 and July 31, 2000
December 24–25October 12July 31–August 1May 19–20March 7
111113115117119
SE1916Dec24P.png
December 24, 1916
SE1924Jul31P.png
July 31, 1924
SE1928May19T.png
May 19, 1928
SE1932Mar07A.png
March 7, 1932
121123125127129
SE1935Dec25A.png
December 25, 1935
SE1939Oct12T.png
October 12, 1939
SE1943Aug01A.png
August 1, 1943
SE1947May20T.png
May 20, 1947
SE1951Mar07A.png
March 7, 1951
131133135137139
SE1954Dec25A.png
December 25, 1954
SE1958Oct12T.png
October 12, 1958
SE1962Jul31A.png
July 31, 1962
SE1966May20A.png
May 20, 1966
SE1970Mar07T.png
March 7, 1970
141143145147149
SE1973Dec24A.png
December 24, 1973
SE1977Oct12T.png
October 12, 1977
SE1981Jul31T.png
July 31, 1981
SE1985May19P.png
May 19, 1985
SE1989Mar07P.png
March 7, 1989
151153155
SE1992Dec24P.png
December 24, 1992
SE1996Oct12P.png
October 12, 1996
SE2000Jul31P.png
July 31, 2000

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1803Feb21T.png
February 21, 1803
(Saros 127)
SE1814Jan21A.gif
January 21, 1814
(Saros 128)
SE1824Dec20Am.gif
December 20, 1824
(Saros 129)
SE1835Nov20T.png
November 20, 1835
(Saros 130)
SE1846Oct20A.png
October 20, 1846
(Saros 131)
SE1857Sep18A.png
September 18, 1857
(Saros 132)
SE1868Aug18T.png
August 18, 1868
(Saros 133)
SE1879Jul19A.png
July 19, 1879
(Saros 134)
SE1890Jun17A.png
June 17, 1890
(Saros 135)
SE1901May18T.png
May 18, 1901
(Saros 136)
SE1912Apr17H.png
April 17, 1912
(Saros 137)
SE1923Mar17A.png
March 17, 1923
(Saros 138)
SE1934Feb14T.png
February 14, 1934
(Saros 139)
SE1945Jan14A.png
January 14, 1945
(Saros 140)
SE1955Dec14A.png
December 14, 1955
(Saros 141)
SE1966Nov12T.png
November 12, 1966
(Saros 142)
SE1977Oct12T.png
October 12, 1977
(Saros 143)
SE1988Sep11A.png
September 11, 1988
(Saros 144)
SE1999Aug11T.png
August 11, 1999
(Saros 145)
SE2010Jul11T.png
July 11, 2010
(Saros 146)
SE2021Jun10A.png
June 10, 2021
(Saros 147)
SE2032May09A.png
May 9, 2032
(Saros 148)
SE2043Apr09T.png
April 9, 2043
(Saros 149)
SE2054Mar09P.png
March 9, 2054
(Saros 150)
SE2065Feb05P.png
February 5, 2065
(Saros 151)
SE2076Jan06T.png
January 6, 2076
(Saros 152)
SE2086Dec06P.png
December 6, 2086
(Saros 153)
SE2097Nov04A.png
November 4, 2097
(Saros 154)
Saros155 11van71 SE2108Oct05T.jpg
October 5, 2108
(Saros 155)
Saros156 07van69 SE2119Sep05P.jpg
September 5, 2119
(Saros 156)
Saros157 05van70 SE2130Aug04P.jpg
August 4, 2130
(Saros 157)
Saros158 05van70 SE2141Jul03P.jpg
July 3, 2141
(Saros 158)
Saros159 02van70 SE2152Jun03P.jpg
June 3, 2152
(Saros 159)
Saros161 01van72 SE2174Apr01P.jpg
April 1, 2174
(Saros 161)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1804Feb11H.png
February 11, 1804
(Saros 137)
SE1833Jan20A.gif
January 20, 1833
(Saros 138)
SE1861Dec31T.gif
December 31, 1861
(Saros 139)
SE1890Dec12H.gif
December 12, 1890
(Saros 140)
SE1919Nov22A.png
November 22, 1919
(Saros 141)
SE1948Nov01T.png
November 1, 1948
(Saros 142)
SE1977Oct12T.png
October 12, 1977
(Saros 143)
SE2006Sep22A.png
September 22, 2006
(Saros 144)
SE2035Sep02T.png
September 2, 2035
(Saros 145)
SE2064Aug12T.png
August 12, 2064
(Saros 146)
SE2093Jul23A.png
July 23, 2093
(Saros 147)
Saros148 27van75 SE2122Jul04T.jpg
July 4, 2122
(Saros 148)
Saros149 28van71 SE2151Jun14T.jpg
June 14, 2151
(Saros 149)
Saros150 26van71 SE2180May24A.jpg
May 24, 2180
(Saros 150)

Notes

  1. "October 12, 1977 Total Solar Eclipse". timeanddate. Retrieved 8 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 8 August 2024.
  3. "1977, Pacific Ocean". Williams College. Archived from the original on 31 August 2019.
  4. "Total Solar Eclipse of 1977 Oct 12". EclipseWise.com. Retrieved 8 August 2024.
  5. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  6. "NASA - Catalog of Solar Eclipses of Saros 143". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of February 16, 1999</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon’s descending node of orbit on Tuesday, February 16, 1999, with a magnitude of 0.9928. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in the southern Indian Ocean including the Prince Edward Islands, South Africa, and Australia.

<span class="mw-page-title-main">Solar eclipse of March 20, 2034</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Monday, March 20, 2034, with a magnitude of 1.0458. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality will be visible in 13 countries: from east to west, Benin, Nigeria, Cameroon, Chad, Sudan, Egypt, Saudi Arabia, Kuwait, Iran, Afghanistan, Pakistan, India, and China. The eclipse passes through Iran only a few hours before the vernal Spring equinox, marking the beginning of the Persian New Year.

<span class="mw-page-title-main">Solar eclipse of January 5, 2038</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, January 5, 2038, with a magnitude of 0.9728. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 18, 1988</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit between Thursday, March 17 and Friday, March 18, 1988, with a magnitude of 1.0464. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only 1.1 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of December 17, 2066</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, December 17, 2066, with a magnitude of 1.0416. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 31, 2049</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, May 31, 2049, with a magnitude of 0.9631. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 3, 2062</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, September 3, 2062, with a magnitude of 0.9749. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 20, 2050</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Friday, May 20, 2050, with a magnitude of 1.0038. It is a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 21, 2069</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, April 21, 2069, with a magnitude of 0.8992. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 12, 2053</span> Total eclipse

A total solar eclipse will take place at the Moon's ascending node of orbit on Friday, September 12, 2053, with a magnitude of 1.0328. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 13, 2061</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, October 13, 2061, with a magnitude of 0.9469. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 12, 2064</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Tuesday, August 12, 2064, with a magnitude of 1.0495. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. This eclipse will pass through the Chilean cities of Valparaíso and the capital Santiago.

<span class="mw-page-title-main">Solar eclipse of March 11, 2062</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Saturday, March 11, 2062, with a magnitude of 0.9331. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 31, 2068</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, May 31, 2068, with a magnitude of 1.011. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 11, 2070</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, April 10 and Friday, April 11, 2070, with a magnitude of 1.0472. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 16, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, December 16, 2085, with a magnitude of 0.9971. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. If a moon with same apparent diameter in this eclipse near the Aphelion, it will be Total Solar Eclipse, but in this time of the year, just 2 weeks and 4 days before perihelion, it is an Annular Solar Eclipse.

<span class="mw-page-title-main">Solar eclipse of October 24, 2079</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, October 24, 2079, with a magnitude of 0.9484. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of March 21, 2099</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, March 21, 2099, with a magnitude of 0.93. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of February 18, 2091</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, February 18, 2091, with a magnitude of 0.6558. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 1, 1921</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 1, 1921, with a magnitude of 1.0293. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.9 days after perigee, the Moon's apparent diameter was larger.

References