Solar eclipse of April 6, 1875

Last updated
Solar eclipse of April 6, 1875
SE1875Apr06T.png
Map
Type of eclipse
NatureTotal
Gamma −0.1292
Magnitude 1.0547
Maximum eclipse
Duration277 s (4 min 37 s)
Coordinates 0°12′S84°48′E / 0.2°S 84.8°E / -0.2; 84.8
Max. width of band182 km (113 mi)
Times (UTC)
Greatest eclipse6:37:26
References
Saros 127 (50 of 82)
Catalog # (SE5000) 9222

A total solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, April 6, 1875, with a magnitude of 1.0547. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.2 days before perigee (on April 7, 1875, at 10:50 UTC), the Moon's apparent diameter will be larger. [1]

Contents

The path of totality was visible from parts of the modern-day Andaman and Nicobar Islands, Myanmar, Thailand, northwestern Cambodia, Laos, Vietnam, and southern Hainan. A partial solar eclipse was also visible for parts of Southern Africa, South Asia, Southeast Asia, and East Asia.

Observations

Astronomers J. N. Lockyer and Arthur Schuster traveled to observe the eclipse and measure spectral lines to determine the elemental contents of the solar corona. [2]

Solar eclipse 1875Apr06 Lockyer.png

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]

April 6, 1875 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1875 April 06 at 03:58:24.3 UTC
First Umbral External Contact1875 April 06 at 04:53:30.8 UTC
First Central Line1875 April 06 at 04:54:30.3 UTC
First Umbral Internal Contact1875 April 06 at 04:55:29.9 UTC
First Penumbral Internal Contact1875 April 06 at 05:51:22.0 UTC
Equatorial Conjunction1875 April 06 at 06:30:12.4 UTC
Ecliptic Conjunction1875 April 06 at 06:36:06.1 UTC
Greatest Eclipse1875 April 06 at 06:37:26.0 UTC
Greatest Duration1875 April 06 at 06:41:48.9 UTC
Last Penumbral Internal Contact1875 April 06 at 07:23:40.2 UTC
Last Umbral Internal Contact1875 April 06 at 08:19:24.7 UTC
Last Central Line1875 April 06 at 08:20:25.7 UTC
Last Umbral External Contact1875 April 06 at 08:21:26.7 UTC
Last Penumbral External Contact1875 April 06 at 09:16:27.4 UTC
April 6, 1875 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.05467
Eclipse Obscuration1.11232
Gamma−0.12915
Sun Right Ascension00h59m10.4s
Sun Declination+06°19'21.5"
Sun Semi-Diameter15'58.4"
Sun Equatorial Horizontal Parallax08.8"
Moon Right Ascension00h59m25.4s
Moon Declination+06°12'27.7"
Moon Semi-Diameter16'33.9"
Moon Equatorial Horizontal Parallax1°00'47.6"
ΔT-3.3 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of April 1875
April 6, 1875
Ascending node (new moon)
April 20
Descending node (full moon)
SE1875Apr06T.png
Total solar eclipse
Solar Saros 127
Penumbral lunar eclipse
Lunar Saros 139

Eclipses in 1875

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 127

Inex

Triad

Solar eclipses of 1874–1877

This eclipse is a member of a semester series . An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]

The partial solar eclipse on August 9, 1877 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1874 to 1877
Ascending node Descending node
SarosMapGammaSarosMapGamma
117 April 16, 1874
SE1874Apr16T.png
Total
−0.8364122October 10, 1874
SE1874Oct10An.gif
Annular
0.9889
127 April 6, 1875
SE1875Apr06T.png
Total
−0.1292132September 29, 1875
SE1875Sep29A.gif
Annular
0.2427
137March 25, 1876
SE1876Mar25A.gif
Annular
0.6142142September 17, 1876
SE1876Sep17T.gif
Total
−0.5054
147March 15, 1877
SE1877Mar15P.gif
Partial
1.3924152September 7, 1877
SE1877Sep07P.gif
Partial
−1.1985

Saros 127

This eclipse is a part of Saros series 127, repeating every 18 years, 11 days, and containing 82 events. The series started with a partial solar eclipse on October 10, 991 AD. It contains total eclipses from May 14, 1352 through August 15, 2091. There are no annular or hybrid eclipses in this set. The series ends at member 82 as a partial eclipse on March 21, 2452. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 31 at 5 minutes, 40 seconds on August 30, 1532. All eclipses in this series occur at the Moon’s ascending node of orbit. [5]

Series members 46–68 occur between 1801 and 2200:
464748
SE1803Feb21T.png
February 21, 1803
SE1821Mar04T.gif
March 4, 1821
SE1839Mar15T.gif
March 15, 1839
495051
SE1857Mar25T.gif
March 25, 1857
SE1875Apr06T.png
April 6, 1875
SE1893Apr16T.png
April 16, 1893
525354
SE1911Apr28T.png
April 28, 1911
SE1929May09T.png
May 9, 1929
SE1947May20T.png
May 20, 1947
555657
SE1965May30T.png
May 30, 1965
SE1983Jun11T.png
June 11, 1983
SE2001Jun21T.png
June 21, 2001
585960
SE2019Jul02T.png
July 2, 2019
SE2037Jul13T.png
July 13, 2037
SE2055Jul24T.png
July 24, 2055
616263
SE2073Aug03T.png
August 3, 2073
SE2091Aug15T.png
August 15, 2091
Saros127 63van82 SE2109Aug26P.jpg
August 26, 2109
646566
Saros127 64van82 SE2127Sep06P.jpg
September 6, 2127
Saros127 65van82 SE2145Sep16P.jpg
September 16, 2145
Saros127 66van82 SE2163Sep28P.jpg
September 28, 2163
6768
Saros127 67van82 SE2181Oct08P.jpg
October 8, 2181
Saros127 68van82 SE2199Oct19P.jpg
October 19, 2199

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

25 eclipse events between April 5, 1837 and June 17, 1928
April 5–6January 22–23November 10–11August 28–30June 17–18
107109111113115
SE1837Apr05P.png
April 5, 1837
SE1841Jan22P.gif
January 22, 1841
SE1844Nov10P.gif
November 10, 1844
SE1848Aug28P.gif
August 28, 1848
SE1852Jun17P.gif
June 17, 1852
117119121123125
SE1856Apr05T.gif
April 5, 1856
SE1860Jan23A.gif
January 23, 1860
SE1863Nov11A.gif
November 11, 1863
SE1867Aug29T.gif
August 29, 1867
SE1871Jun18A.gif
June 18, 1871
127129131133135
SE1875Apr06T.gif
April 6, 1875
SE1879Jan22A.gif
January 22, 1879
SE1882Nov10A.gif
November 10, 1882
SE1886Aug29T.png
August 29, 1886
SE1890Jun17A.gif
June 17, 1890
137139141143145
SE1894Apr06H.gif
April 6, 1894
SE1898Jan22T.png
January 22, 1898
SE1901Nov11A.png
November 11, 1901
SE1905Aug30T.png
August 30, 1905
SE1909Jun17H.png
June 17, 1909
147149151153155
SE1913Apr06P.png
April 6, 1913
SE1917Jan23P.png
January 23, 1917
SE1920Nov10P.png
November 10, 1920
SE1924Aug30P.png
August 30, 1924
SE1928Jun17P.png
June 17, 1928

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1809Oct09T.gif
October 9, 1809
(Saros 121)
SE1820Sep07A.png
September 7, 1820
(Saros 122)
SE1831Aug07T.gif
August 7, 1831
(Saros 123)
SE1842Jul08T.png
July 8, 1842
(Saros 124)
SE1853Jun06A.gif
June 6, 1853
(Saros 125)
SE1864May06H.gif
May 6, 1864
(Saros 126)
SE1875Apr06T.png
April 6, 1875
(Saros 127)
SE1886Mar05A.gif
March 5, 1886
(Saros 128)
SE1897Feb01A.gif
February 1, 1897
(Saros 129)
SE1908Jan03T.png
January 3, 1908
(Saros 130)
SE1918Dec03A.png
December 3, 1918
(Saros 131)
SE1929Nov01A.png
November 1, 1929
(Saros 132)
SE1940Oct01T.png
October 1, 1940
(Saros 133)
SE1951Sep01A.png
September 1, 1951
(Saros 134)
SE1962Jul31A.png
July 31, 1962
(Saros 135)
SE1973Jun30T.png
June 30, 1973
(Saros 136)
SE1984May30A.png
May 30, 1984
(Saros 137)
SE1995Apr29A.png
April 29, 1995
(Saros 138)
SE2006Mar29T.png
March 29, 2006
(Saros 139)
SE2017Feb26A.png
February 26, 2017
(Saros 140)
SE2028Jan26A.png
January 26, 2028
(Saros 141)
SE2038Dec26T.png
December 26, 2038
(Saros 142)
SE2049Nov25H.png
November 25, 2049
(Saros 143)
SE2060Oct24A.png
October 24, 2060
(Saros 144)
SE2071Sep23T.png
September 23, 2071
(Saros 145)
SE2082Aug24T.png
August 24, 2082
(Saros 146)
SE2093Jul23A.png
July 23, 2093
(Saros 147)
SE2104Jun22T.png
June 22, 2104
(Saros 148)
SE2115May24T.png
May 24, 2115
(Saros 149)
Saros150 23van71 SE2126Apr22A.jpg
April 22, 2126
(Saros 150)
Saros151 21van72 SE2137Mar21A.jpg
March 21, 2137
(Saros 151)
Saros152 20van70 SE2148Feb19T.jpg
February 19, 2148
(Saros 152)
Saros153 17van70 SE2159Jan19A.jpg
January 19, 2159
(Saros 153)
Saros154 15van71 SE2169Dec18A.jpg
December 18, 2169
(Saros 154)
Saros155 15van71 SE2180Nov17T.jpg
November 17, 2180
(Saros 155)
Saros156 11van69 SE2191Oct18A.jpg
October 18, 2191
(Saros 156)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1817May16A.gif
May 16, 1817
(Saros 125)
SE1846Apr25H.gif
April 25, 1846
(Saros 126)
SE1875Apr06T.png
April 6, 1875
(Saros 127)
SE1904Mar17A.png
March 17, 1904
(Saros 128)
SE1933Feb24A.png
February 24, 1933
(Saros 129)
SE1962Feb05T.png
February 5, 1962
(Saros 130)
SE1991Jan15A.png
January 15, 1991
(Saros 131)
SE2019Dec26A.png
December 26, 2019
(Saros 132)
SE2048Dec05T.png
December 5, 2048
(Saros 133)
SE2077Nov15A.png
November 15, 2077
(Saros 134)
SE2106Oct26A.png
October 26, 2106
(Saros 135)
SE2135Oct07T.png
October 7, 2135
(Saros 136)
SE2164Sep16A.png
September 16, 2164
(Saros 137)
SE2193Aug26A.png
August 26, 2193
(Saros 138)

Notes

  1. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 29 August 2024.
  2. Lockyer, J. N.; Schuster, Arthur (1878). "Report on the Total Solar Eclipse of April 6, 1875" (PDF). Philosophical Transactions of the Royal Society of London. 169: 139–154. Bibcode:1878RSPT..169..139L. JSTOR   109303.
  3. "Total Solar Eclipse of 1875 Apr 06". EclipseWise.com. Retrieved 29 August 2024.
  4. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. "NASA - Catalog of Solar Eclipses of Saros 127". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of February 5, 1962</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Monday, February 5, 1962, with a magnitude of 1.043. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 21.5 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of April 30, 2060</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, April 30, 2060, with a magnitude of 1.066. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 18 hours after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of May 22, 2096</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit between Monday, May 21 and Tuesday, May 22, 2096, with a magnitude of 1.0737. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 13 hours after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of November 22, 1984</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Thursday, November 22 and Friday, November 23, 1984, with a magnitude of 1.0237. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.1 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of October 12, 1958</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, October 12, 1958, with a magnitude of 1.0608. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 5.5 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of October 1, 1940</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, October 1, 1940, with a magnitude of 1.0645. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 4 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of September 9, 1904</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Friday, September 9, 1904, with a magnitude of 1.0709. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 1.5 hours after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of November 14, 2031</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, November 14, 2031, with a magnitude of 1.0106. It is a hybrid event, with portions of its central path near sunrise and sunset as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.1 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of December 26, 2038</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Saturday, December 25 and Sunday, December 26, 2038, with a magnitude of 1.0268. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.7 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of January 16, 2075</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, January 16, 2075, with a magnitude of 1.0311. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.5 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of September 4, 2100</span> Total solar eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Saturday, September 4, 2100, with a magnitude of 1.0402. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.5 days before perigee, the Moon's apparent diameter will be larger. This will be the last solar eclipse of the 21st century.

<span class="mw-page-title-main">Solar eclipse of September 12, 2053</span> Total eclipse

A total solar eclipse will take place at the Moon's ascending node of orbit on Friday, September 12, 2053, with a magnitude of 1.0328. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.7 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of April 11, 2070</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, April 10 and Friday, April 11, 2070, with a magnitude of 1.0472. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.6 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of October 4, 2089</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit between Monday, October 3 and Tuesday, October 4, 2089, with a magnitude of 1.0333. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.3 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of April 16, 1893</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, April 16, 1893, with a magnitude of 1.0556. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.3 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of December 23, 1908</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, December 23, 1908, with a magnitude of 1.0024. It was a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.1 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of January 25, 1944</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Tuesday, January 25, 1944, with a magnitude of 1.0428. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 20 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of August 29, 1886</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, August 29, 1886, with a magnitude of 1.0735. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 4 hours after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of May 17, 1882</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, May 17, 1882, with a magnitude of 1.0200. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 4.2 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of January 22, 1879</span> Annular solar eclipse January 22, 1879

An annular solar eclipse occurred at the Moon's ascending node of orbit on Wednesday January 22, 1879, with a magnitude of 0.9700. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter will be near the average diameter because it will occur 8.1 days after perigee and 6.7 days before apogee.

References