Solar eclipse of January 22, 1879

Last updated
Solar eclipse of January 22, 1879
SE1879Jan22A.gif
Map
Type of eclipse
NatureAnnular
Gamma −0.1824
Magnitude 0.97
Maximum eclipse
Duration183 s (3 min 3 s)
Coordinates 29°48′S8°30′E / 29.8°S 8.5°E / -29.8; 8.5
Max. width of band110 km (68 mi)
Times (UTC)
Greatest eclipse11:53:08
References
Saros 129 (44 of 80)
Catalog # (SE5000) 9231

An annular solar eclipse occurred at the Moon's ascending node of orbit on Wednesday January 22, 1879, with a magnitude of 0.9700. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 8.1 days after perigee (on January 14, 1879, at 16:55 UTC) and 6.7 days before apogee (on January 29, 1879, at 5:10 UTC). [1]

Contents

The path of annularity was visible from parts of modern-day Argentina, Uruguay, southern Brazil, Namibia, Botswana, Zambia, the southernmost Democratic Republic of the Congo, northern Malawi, and Tanzania. A partial solar eclipse was also visible for parts of South America, Antarctica, Africa, and the Middle East.

Observations

On 22 January 1879, approximately 1,700 British soldiers and over 1,000 Zulu warriors were killed during the Zulu War in South Africa. At 2:29 PM there was a solar eclipse, and according to legend, this motivated the Zulus, who claimed that it was a sign that they would prevail. [2] [3] The conflict was named the Battle of Isandlwana, the Zulu name for the battle translates as "the day of the dead moon". [4]

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [5]

January 22, 1879 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1879 January 22 at 08:59:48.6 UTC
First Umbral External Contact1879 January 22 at 10:01:38.5 UTC
First Central Line1879 January 22 at 10:03:06.2 UTC
First Umbral Internal Contact1879 January 22 at 10:04:33.9 UTC
First Penumbral Internal Contact1879 January 22 at 11:08:22.0 UTC
Greatest Duration1879 January 22 at 11:31:00.1 UTC
Equatorial Conjunction1879 January 22 at 11:46:12.9 UTC
Ecliptic Conjunction1879 January 22 at 11:51:05.4 UTC
Greatest Eclipse1879 January 22 at 11:53:08.0 UTC
Last Penumbral Internal Contact1879 January 22 at 12:38:03.0 UTC
Last Umbral Internal Contact1879 January 22 at 13:41:44.5 UTC
Last Central Line1879 January 22 at 13:43:15.1 UTC
Last Umbral External Contact1879 January 22 at 13:44:45.8 UTC
Last Penumbral External Contact1879 January 22 at 14:46:36.9 UTC
January 22, 1879 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.97002
Eclipse Obscuration0.94094
Gamma−0.18240
Sun Right Ascension20h17m38.7s
Sun Declination-19°41'46.4"
Sun Semi-Diameter16'14.9"
Sun Equatorial Horizontal Parallax08.9"
Moon Right Ascension20h17m52.8s
Moon Declination-19°51'35.0"
Moon Semi-Diameter15'31.0"
Moon Equatorial Horizontal Parallax0°56'56.8"
ΔT-4.9 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of January–February 1879
January 8
Descending node (full moon)
January 22
Ascending node (new moon)
February 7
Descending node (full moon)
SE1879Jan22A.gif
Penumbral lunar eclipse
Lunar Saros 103
Annular solar eclipse
Solar Saros 129
Penumbral lunar eclipse
Lunar Saros 141

Eclipses in 1879

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 129

Inex

Triad

Solar eclipses of 1877–1880

This eclipse is a member of a semester series . An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [6]

The partial solar eclipses on March 15, 1877 and September 7, 1877 occur in the previous lunar year eclipse set, and the partial solar eclipse on December 2, 1880 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1877 to 1880
Descending node Ascending node
SarosMapGammaSarosMapGamma
114August 9, 1877
SE1877Aug09P.gif
Partial
1.3277119February 2, 1878
SE1878Feb02A.gif
Annular
−0.9071
124 July 29, 1878
SE1878Jul29T.png
Total
0.6232129 January 22, 1879
SE1879Jan22A.gif
Annular
−0.1824
134July 19, 1879
SE1879Jul19A.png
Annular
−0.1439139January 11, 1880
SE1880Jan11T.gif
Total
0.6136
144July 7, 1880
SE1880Jul07A.gif
Annular
−0.9406146December 31, 1880
SE1880Dec31P.gif
Partial
1.1591

Saros 129

This eclipse is a part of Saros series 129, repeating every 18 years, 11 days, and containing 80 events. The series started with a partial solar eclipse on October 3, 1103. It contains annular eclipses from May 6, 1464 through March 18, 1969; hybrid eclipses from March 29, 1987 through April 20, 2023; and total eclipses from April 30, 2041 through July 26, 2185. The series ends at member 80 as a partial eclipse on February 21, 2528. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 34 at 5 minutes, 10 seconds on October 4, 1698, and the longest duration of totality will be produced by member 58 at 3 minutes, 43 seconds on June 25, 2131. All eclipses in this series occur at the Moon’s ascending node of orbit. [7]

Series members 40–61 occur between 1801 and 2200:
404142
SE1806Dec10A.gif
December 10, 1806
SE1824Dec20Am.gif
December 20, 1824
SE1842Dec31A.gif
December 31, 1842
434445
SE1861Jan11A.gif
January 11, 1861
SE1879Jan22A.gif
January 22, 1879
SE1897Feb01A.gif
February 1, 1897
464748
SE1915Feb14A.png
February 14, 1915
SE1933Feb24A.png
February 24, 1933
SE1951Mar07A.png
March 7, 1951
495051
SE1969Mar18A.png
March 18, 1969
SE1987Mar29H.png
March 29, 1987
SE2005Apr08H.png
April 8, 2005
525354
SE2023Apr20H.png
April 20, 2023
SE2041Apr30T.png
April 30, 2041
SE2059May11T.png
May 11, 2059
555657
SE2077May22T.png
May 22, 2077
SE2095Jun02T.png
June 2, 2095
Saros129 57van80 SE2113Jun13T.jpg
June 13, 2113
585960
Saros129 58van80 SE2131Jun25T.jpg
June 25, 2131
Saros129 59van80 SE2149Jul05T.jpg
July 5, 2149
Saros129 60van80 SE2167Jul16T.jpg
July 16, 2167
61
Saros129 61van80 SE2185Jul26T.jpg
July 26, 2185

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

25 eclipse events between April 5, 1837 and June 17, 1928
April 5–6January 22–23November 10–11August 28–30June 17–18
107109111113115
SE1837Apr05P.png
April 5, 1837
SE1841Jan22P.gif
January 22, 1841
SE1844Nov10P.gif
November 10, 1844
SE1848Aug28P.gif
August 28, 1848
SE1852Jun17P.gif
June 17, 1852
117119121123125
SE1856Apr05T.gif
April 5, 1856
SE1860Jan23A.gif
January 23, 1860
SE1863Nov11A.gif
November 11, 1863
SE1867Aug29T.gif
August 29, 1867
SE1871Jun18A.gif
June 18, 1871
127129131133135
SE1875Apr06T.gif
April 6, 1875
SE1879Jan22A.gif
January 22, 1879
SE1882Nov10A.gif
November 10, 1882
SE1886Aug29T.png
August 29, 1886
SE1890Jun17A.gif
June 17, 1890
137139141143145
SE1894Apr06H.gif
April 6, 1894
SE1898Jan22T.png
January 22, 1898
SE1901Nov11A.png
November 11, 1901
SE1905Aug30T.png
August 30, 1905
SE1909Jun17H.png
June 17, 1909
147149151153155
SE1913Apr06P.png
April 6, 1913
SE1917Jan23P.png
January 23, 1917
SE1920Nov10P.png
November 10, 1920
SE1924Aug30P.png
August 30, 1924
SE1928Jun17P.png
June 17, 1928

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1802Aug28A.png
August 28, 1802
(Saros 122)
SE1813Jul27T.gif
July 27, 1813
(Saros 123)
SE1824Jun26T.png
June 26, 1824
(Saros 124)
SE1835May27A.gif
May 27, 1835
(Saros 125)
SE1846Apr25H.gif
April 25, 1846
(Saros 126)
SE1857Mar25T.png
March 25, 1857
(Saros 127)
SE1868Feb23A.gif
February 23, 1868
(Saros 128)
SE1879Jan22A.gif
January 22, 1879
(Saros 129)
SE1889Dec22T.png
December 22, 1889
(Saros 130)
SE1900Nov22A.png
November 22, 1900
(Saros 131)
SE1911Oct22A.png
October 22, 1911
(Saros 132)
SE1922Sep21T.png
September 21, 1922
(Saros 133)
SE1933Aug21A.png
August 21, 1933
(Saros 134)
SE1944Jul20A.png
July 20, 1944
(Saros 135)
SE1955Jun20T.png
June 20, 1955
(Saros 136)
SE1966May20A.png
May 20, 1966
(Saros 137)
SE1977Apr18A.png
April 18, 1977
(Saros 138)
SE1988Mar18T.png
March 18, 1988
(Saros 139)
SE1999Feb16A.png
February 16, 1999
(Saros 140)
SE2010Jan15A.png
January 15, 2010
(Saros 141)
SE2020Dec14T.png
December 14, 2020
(Saros 142)
SE2031Nov14H.png
November 14, 2031
(Saros 143)
SE2042Oct14A.png
October 14, 2042
(Saros 144)
SE2053Sep12T.png
September 12, 2053
(Saros 145)
SE2064Aug12T.png
August 12, 2064
(Saros 146)
SE2075Jul13A.png
July 13, 2075
(Saros 147)
SE2086Jun11T.png
June 11, 2086
(Saros 148)
SE2097May11T.png
May 11, 2097
(Saros 149)
Saros150 22van71 SE2108Apr11P.jpg
April 11, 2108
(Saros 150)
Saros151 20van72 SE2119Mar11A.jpg
March 11, 2119
(Saros 151)
Saros152 19van70 SE2130Feb08T.jpg
February 8, 2130
(Saros 152)
SE2141Jan08A.png
January 8, 2141
(Saros 153)
Saros154 14van71 SE2151Dec08A.jpg
December 8, 2151
(Saros 154)
Saros155 14van71 SE2162Nov07T.jpg
November 7, 2162
(Saros 155)
Saros156 10van69 SE2173Oct07A.jpg
October 7, 2173
(Saros 156)
SE2184Sep04A.png
September 4, 2184
(Saros 157)
Saros158 08van70 SE2195Aug05T.jpg
August 5, 2195
(Saros 158)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1821Mar04T.gif
March 4, 1821
(Saros 127)
SE1850Feb12A.gif
February 12, 1850
(Saros 128)
SE1879Jan22A.gif
January 22, 1879
(Saros 129)
SE1908Jan03T.png
January 3, 1908
(Saros 130)
SE1936Dec13A.png
December 13, 1936
(Saros 131)
SE1965Nov23A.png
November 23, 1965
(Saros 132)
SE1994Nov03T.png
November 3, 1994
(Saros 133)
SE2023Oct14A.png
October 14, 2023
(Saros 134)
SE2052Sep22A.png
September 22, 2052
(Saros 135)
SE2081Sep03T.png
September 3, 2081
(Saros 136)
SE2110Aug15A.png
August 15, 2110
(Saros 137)
SE2139Jul25A.png
July 25, 2139
(Saros 138)
SE2168Jul05T.png
July 5, 2168
(Saros 139)
SE2197Jun15A.png
June 15, 2197
(Saros 140)

Notes

  1. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 29 August 2024.
  2. "The Battle of Isandlwana - The Zulu War".
  3. "Zulus and British re-enact 1879 battle" . Retrieved 11 October 2014.
  4. Rattray, David (author) (1997). The Day of the Dead Moon (The Story of the Anglo-Zulu War 1879) (CD). GTV. ASIN   B0010JC3ZU. audio.
  5. "Annular Solar Eclipse of 1879 Jan 22". EclipseWise.com. Retrieved 29 August 2024.
  6. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  7. "NASA - Catalog of Solar Eclipses of Saros 129". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of January 5, 2038</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, January 5, 2038, with a magnitude of 0.9728. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter will be near the average diameter because it will occur 6.8 days after perigee and 7 days before apogee.

<span class="mw-page-title-main">Solar eclipse of December 26, 2038</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Saturday, December 25 and Sunday, December 26, 2038, with a magnitude of 1.0268. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.7 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of January 4, 1973</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, January 4, 1973, with a magnitude of 0.9303. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.75 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of March 18, 1969</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, March 18, 1969, with a magnitude of 0.9954. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 5.1 days after perigee and 7.7 days before apogee.

<span class="mw-page-title-main">Solar eclipse of March 20, 2053</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, March 20, 2053, with a magnitude of 0.9919. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.6 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of July 12, 2056</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 12, 2056, with a magnitude of 0.9878. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.8 days after apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of January 16, 2056</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit between Sunday, January 16 and Monday, January 17, 2056, with a magnitude of 0.9759. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter will be near the average diameter because it will occur 6.25 days after perigee and 7.2 days before apogee.

<span class="mw-page-title-main">Solar eclipse of October 24, 2060</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, October 24, 2060, with a magnitude of 0.9277. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only about 18 hours before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of December 16, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit between Sunday, December 16 and Monday, December 17, 2085, with a magnitude of 0.9971. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.7 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of July 24, 2074</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, July 24, 2074, with a magnitude of 0.9838. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.6 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of January 27, 2074</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, January 27, 2074, with a magnitude of 0.9798. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.2 days after apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of November 4, 2078</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, November 4, 2078, with a magnitude of 0.9255. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only about 22 hours before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of March 10, 2100</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit between Wednesday, March 10 and Thursday, March 11, 2100, with a magnitude of 0.9338. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.9 days before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of November 15, 2096</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit between Wednesday, November 14 and Thursday, November 15, 2096, with a magnitude of 0.9237. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 1.2 days before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of February 7, 2092</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, February 7, 2092, with a magnitude of 0.984. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 6.25 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of June 22, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.6 days before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of June 28, 1908</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Sunday, June 28, 1908, with a magnitude of 0.9655. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4 days before apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of February 24, 1933</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, February 24, 1933, with a magnitude of 0.9841. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). The Moon's apparent diameter was near the average diameter because it occurred 6.1 days after perigee and 7.25 days before apogee.

<span class="mw-page-title-main">Solar eclipse of July 9, 1926</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit between Friday, July 9 and Saturday, July 10, 1926, with a magnitude of 0.968. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.3 days before apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of August 29, 1886</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, August 29, 1886, with a magnitude of 1.0735. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 4 hours after perigee, the Moon's apparent diameter was larger.

References