Solar eclipse of July 13, 2018

Last updated
Solar eclipse of July 13, 2018
Eclipse (41629136430).jpg
SE2018Jul13P.png
Map
Type of eclipse
NaturePartial
Gamma −1.3542
Magnitude 0.3365
Maximum eclipse
Coordinates 67°54′S127°24′E / 67.9°S 127.4°E / -67.9; 127.4
Times (UTC)
Greatest eclipse3:02:16
References
Saros 117 (69 of 71)
Catalog # (SE5000) 9548

A partial solar eclipse occurred at the Moon's ascending node of orbit on Friday, July 13, 2018, [1] [2] [3] with a magnitude of 0.3365. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

The moon's penumbra touched a small part of Antarctica, and southern Australia in Tasmania, where the eclipse was observed with a magnitude of about 0.1. The eclipse was also visible in Stewart Island, an island south of New Zealand. [4]

Images

SE2018Jul13P.gif

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [5]

July 13, 2018 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact2018 July 13 at 01:49:32.3 UTC
Ecliptic Conjunction2018 July 13 at 02:49:01.2 UTC
Greatest Eclipse2018 July 13 at 03:02:16.1 UTC
Equatorial Conjunction2018 July 13 at 03:10:13.3 UTC
Last Penumbral External Contact2018 July 13 at 04:14:55.9 UTC
July 13, 2018 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.33654
Eclipse Obscuration0.22578
Gamma−1.35423
Sun Right Ascension07h29m31.1s
Sun Declination+21°50'30.6"
Sun Semi-Diameter15'44.0"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension07h29m10.9s
Moon Declination+20°27'46.1"
Moon Semi-Diameter16'42.8"
Moon Equatorial Horizontal Parallax1°01'20.4"
ΔT69.2 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of July–August 2018
July 13
Ascending node (new moon)
July 27
Descending node (full moon)
August 11
Ascending node (new moon)
SE2018Jul13P.png Lunar eclipse chart close-2018Jul27.png SE2018Aug11P.png
Partial solar eclipse
Solar Saros 117
Total lunar eclipse
Lunar Saros 129
Partial solar eclipse
Solar Saros 155

Eclipses in 2018

Metonic

Half-Saros

Tritos

Solar Saros 117

Inex

Triad

Solar eclipses of 2018–2021

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [6]

The partial solar eclipses on February 15, 2018 and August 11, 2018 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 2018 to 2021
Ascending node Descending node
SarosMapGammaSarosMapGamma
117
Eclipse (41629136430).jpg
Partial in Melbourne, Australia
July 13, 2018
SE2018Jul13P.png
Partial
−1.35423122
Solar eclipse of January 6, 2019 in Nakhodka, Primorsky Krai.jpg
Partial in Nakhodka, Russia
January 6, 2019
SE2019Jan06P.png
Partial
1.14174
127
20190702 Totality LaSerena Chile.jpg
Totality in La Serena, Chile
July 2, 2019
SE2019Jul02T.png
Total
−0.64656132
Annular Solar Eclipse in Jaffna - 26 December 2019 (1).jpg
Annularity in Jaffna, Sri Lanka
December 26, 2019
SE2019Dec26A.png
Annular
0.41351
137
Solar eclipse of 21 June 2020 in Beigang, Yunlin, Taiwan.jpg
Annularity in Beigang, Yunlin, Taiwan
June 21, 2020
SE2020Jun21A.png
Annular
0.12090142
Eclipse total Gorbea 2020.jpg
Totality in Gorbea, Chile
December 14, 2020
SE2020Dec14T.png
Total
−0.29394
147
Partial Solar Eclipse, 10 June 2021 (51237879346) (cropped).jpg
Partial in Halifax, Canada
June 10, 2021
SE2021Jun10A.png
Annular
0.91516152
Royal Navy sailors observed 2021 partial solar eclipse off South Georgia (cropped).jpg
From HMS Protector off South Georgia
December 4, 2021
SE2021Dec04T.png
Total
−0.95261

Saros 117

This eclipse is a part of Saros series 117, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on June 24, 792 AD. It contains annular eclipses from September 18, 936 AD through May 14, 1333; hybrid eclipses from May 25, 1351 through July 8, 1423; and total eclipses from July 18, 1441 through May 19, 1928. The series ends at member 71 as a partial eclipse on August 3, 2054. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 16 at 9 minutes, 26 seconds on December 3, 1062, and the longest duration of totality was produced by member 62 at 4 minutes, 19 seconds on April 26, 1892. All eclipses in this series occur at the Moon’s ascending node of orbit. [7]

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

21 eclipse events between July 13, 2018 and July 12, 2094
July 12–13April 30–May 1February 16–17December 5–6September 22–23
117119121123125
SE2018Jul13P.png
July 13, 2018
SE2022Apr30P.png
April 30, 2022
SE2026Feb17A.png
February 17, 2026
SE2029Dec05P.png
December 5, 2029
SE2033Sep23P.png
September 23, 2033
127129131133135
SE2037Jul13T.png
July 13, 2037
SE2041Apr30T.png
April 30, 2041
SE2045Feb16A.png
February 16, 2045
SE2048Dec05T.png
December 5, 2048
SE2052Sep22A.png
September 22, 2052
137139141143145
SE2056Jul12A.png
July 12, 2056
SE2060Apr30T.png
April 30, 2060
SE2064Feb17A.png
February 17, 2064
SE2067Dec06H.png
December 6, 2067
SE2071Sep23T.png
September 23, 2071
147149151153155
SE2075Jul13A.png
July 13, 2075
SE2079May01T.png
May 1, 2079
SE2083Feb16P.png
February 16, 2083
SE2086Dec06P.png
December 6, 2086
SE2090Sep23T.png
September 23, 2090
157
SE2094Jul12P.png
July 12, 2094

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 2018 and 2200
SE2018Jul13P.png
July 13, 2018
(Saros 117)
SE2029Jun12P.png
June 12, 2029
(Saros 118)
SE2040May11P.png
May 11, 2040
(Saros 119)
SE2051Apr11P.png
April 11, 2051
(Saros 120)
SE2062Mar11P.png
March 11, 2062
(Saros 121)
SE2073Feb07P.png
February 7, 2073
(Saros 122)
SE2084Jan07P.png
January 7, 2084
(Saros 123)
SE2094Dec07P.png
December 7, 2094
(Saros 124)
Saros125 59van73 SE2105Nov06P.jpg
November 6, 2105
(Saros 125)
Saros126 53van72 SE2116Oct06P.jpg
October 6, 2116
(Saros 126)
Saros127 64van82 SE2127Sep06P.jpg
September 6, 2127
(Saros 127)
Saros128 65van73 SE2138Aug05P.jpg
August 5, 2138
(Saros 128)
Saros129 59van80 SE2149Jul05T.jpg
July 5, 2149
(Saros 129)
SE2160Jun04T.png
June 4, 2160
(Saros 130)
SE2171May05A.png
May 5, 2171
(Saros 131)
SE2182Apr03H.png
April 3, 2182
(Saros 132)
SE2193Mar03T.png
March 3, 2193
(Saros 133)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1844 and 2200
SE1844Nov10P.png
November 10, 1844
(Saros 111)
SE1931Sep12P.png
September 12, 1931
(Saros 114)
SE2018Jul13P.png
July 13, 2018
(Saros 117)
SE2047Jun23P.png
June 23, 2047
(Saros 118)
SE2076Jun01P.png
June 1, 2076
(Saros 119)
Saros120 66van71 SE2105May14P.jpg
May 14, 2105
(Saros 120)
Saros121 67van71 SE2134Apr24P.jpg
April 24, 2134
(Saros 121)
Saros122 66van70 SE2163Apr03P.jpg
April 3, 2163
(Saros 122)
Saros123 63van70 SE2192Mar13P.jpg
March 13, 2192
(Saros 123)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of November 13, 1993</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit between Saturday, November 13 and Sunday, November 14, 1993, with a magnitude of 0.928. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 31, 2049</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, May 31, 2049, with a magnitude of 0.9631. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 23, 2033</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, September 23, 2033, with a magnitude of 0.689. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 27, 2036</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Wednesday, February 27, 2036, with a magnitude of 0.6286. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 21, 2036</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Thursday, August 21, 2036, with a magnitude of 0.8622. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of August 9, 1953</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Sunday, August 9, 1953, with a magnitude of 0.3729. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 22, 2047</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Monday, July 22, 2047, with a magnitude of 0.3604. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of January 16, 2075</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, January 16, 2075, with a magnitude of 1.0311. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 3, 2054</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, August 3, 2054, with a magnitude of 0.0655. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth. This event will be the 71st and final event of Solar Saros 117.

<span class="mw-page-title-main">Solar eclipse of May 22, 2058</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, May 22, 2058, with a magnitude of 0.4141. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 13, 2061</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, October 13, 2061, with a magnitude of 0.9469. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 31, 2068</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, May 31, 2068, with a magnitude of 1.011. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 11, 2070</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, April 10 and Friday, April 11, 2070, with a magnitude of 1.0472. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of July 13, 2075</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, July 13, 2075, with a magnitude of 0.9467. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide.

<span class="mw-page-title-main">Solar eclipse of October 24, 2079</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, October 24, 2079, with a magnitude of 0.9484. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 11, 2086</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Tuesday, June 11, 2086, with a magnitude of 1.0174. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of April 1, 2098</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, April 1, 2098, with a magnitude of 0.7984. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of October 26, 2087</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Sunday, October 26, 2087, with a magnitude of 0.4696. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 31, 2090</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Friday, March 31, 2090, with a magnitude of 0.7843. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 1, 2087</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, June 1, 2087, with a magnitude of 0.2146. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. "July 13, 2018 Partial Solar Eclipse". timeanddate. Retrieved 12 August 2024.
  2. "A Supermoon Partial Eclipse Is Happening Just in Time for Friday the 13th". Popular Mechanics. July 13, 2018.
  3. Padgett, Lauren. "Friday the 13th solar eclipse only visible to rare few" via AJC.com.
  4. "Partial Solar Eclipse on July 13, 2018". www.timeanddate.com. Retrieved July 13, 2018.
  5. "Partial Solar Eclipse of 2018 Jul 13". EclipseWise.com. Retrieved 12 August 2024.
  6. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  7. "NASA - Catalog of Solar Eclipses of Saros 117". eclipse.gsfc.nasa.gov.