Solar eclipse of July 18, 1860

Last updated
Solar eclipse of July 18, 1860
SE1860Jul18T.png
Map
Type of eclipse
NatureTotal
Gamma 0.5487
Magnitude 1.05
Maximum eclipse
Duration219 s (3 min 39 s)
Coordinates 52°30′N20°18′W / 52.5°N 20.3°W / 52.5; -20.3
Max. width of band198 km (123 mi)
Times (UTC)
Greatest eclipse14:26:24
References
Saros 124 (46 of 73)
Catalog # (SE5000) 9188

A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, July 18, 1860, with a magnitude of 1.0500. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.2 days before perigee (on July 20, 1860, at 19:15 UTC), the Moon's apparent diameter was larger. [1]

Contents

The path of totality was visible from parts of modern-day northwestern Oregon, Washington, northern Idaho, northwestern Montana, Canada, Spain, Algeria, Tunisia, Libya, Egypt, Sudan, and Eritrea. A partial solar eclipse was also visible for parts of North America, Europe, West Asia, North Africa, and West Africa.

Coronal Mass Ejection

The first coronal mass ejection may have been observed as coronal loops progressing during this total eclipse. [2]

People watching an eclipse in 1860 at Toulouse, France. Picture by Eugene Trutat, Museum de Toulouse. Toulouse - L'eclipse de La lunette M. Raux (Baux ^) et ... (illisible) coll. humide - Fonds Trutat - MHNT.PHa.814.105.jpg
People watching an eclipse in 1860 at Toulouse, France. Picture by Eugène Trutat, Muséum de Toulouse.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]

July 18, 1860 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1860 July 18 at 11:54:56.3 UTC
First Umbral External Contact1860 July 18 at 12:57:13.1 UTC
First Central Line1860 July 18 at 12:58:21.9 UTC
First Umbral Internal Contact1860 July 18 at 12:59:31.0 UTC
Equatorial Conjunction1860 July 18 at 14:09:18.4 UTC
Ecliptic Conjunction1860 July 18 at 14:20:40.8 UTC
Greatest Duration1860 July 18 at 14:24:54.3 UTC
Greatest Eclipse1860 July 18 at 14:26:24.2 UTC
Last Umbral Internal Contact1860 July 18 at 15:53:26.2 UTC
Last Central Line1860 July 18 at 15:54:37.2 UTC
Last Umbral External Contact1860 July 18 at 15:55:48.0 UTC
Last Penumbral External Contact1860 July 18 at 16:57:54.9 UTC
July 18, 1860 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.05000
Eclipse Obscuration1.10249
Gamma0.54871
Sun Right Ascension07h52m23.3s
Sun Declination+20°56'51.5"
Sun Semi-Diameter15'44.4"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension07h53m03.2s
Moon Declination+21°28'15.4"
Moon Semi-Diameter16'18.0"
Moon Equatorial Horizontal Parallax0°59'49.1"
ΔT7.7 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of July–August 1860
July 18
Descending node (new moon)
August 1
Ascending node (full moon)
SE1860Jul18T.png
Total solar eclipse
Solar Saros 124
Partial lunar eclipse
Lunar Saros 136

Eclipses in 1860

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 124

Inex

Triad

Solar eclipses of 1859–1862

This eclipse is a member of a semester series . An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]

The partial solar eclipses on March 4, 1859 and August 28, 1859 occur in the previous lunar year eclipse set, and the partial solar eclipse on November 21, 1862 occurs in the next lunar year eclipse set.

Solar eclipse series sets from 1859 to 1862
Ascending node Descending node
SarosMapGammaSarosMapGamma
109February 3, 1859
SE1859Feb03Pe.gif
Partial
−1.5659114July 29, 1859
SE1859Jul29P.gif
Partial
1.2598
119 January 23, 1860
SE1860Jan23A.png
Annular
−0.8969124 July 18, 1860
SE1860Jul18T.png
Total
0.5487
129January 11, 1861
SE1861Jan11A.gif
Annular
−0.1766134July 8, 1861
SE1861Jul08A.gif
Annular
−0.2231
139December 31, 1861
SE1861Dec31T.gif
Total
0.5187144June 27, 1862
SE1862Jun27P.gif
Partial
−1.0252
149December 21, 1862
SE1862Dec21P.gif
Partial
1.1633

Saros 124

This eclipse is a part of Saros series 124, repeating every 18 years, 11 days, and containing 73 events. The series started with a partial solar eclipse on March 6, 1049. It contains total eclipses from June 12, 1211 through September 22, 1968, and a hybrid eclipse on October 3, 1986. There are no annular eclipses in this set. The series ends at member 73 as a partial eclipse on May 11, 2347. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 39 at 5 minutes, 46 seconds on May 3, 1734. All eclipses in this series occur at the Moon’s descending node of orbit. [5]

Series members 43–64 occur between 1801 and 2200:
434445
SE1806Jun16T.png
June 16, 1806
SE1824Jun26T.png
June 26, 1824
SE1842Jul08T.png
July 8, 1842
464748
SE1860Jul18T.png
July 18, 1860
SE1878Jul29T.png
July 29, 1878
SE1896Aug09T.png
August 9, 1896
495051
SE1914Aug21T.png
August 21, 1914
SE1932Aug31T.png
August 31, 1932
SE1950Sep12T.png
September 12, 1950
525354
SE1968Sep22T.png
September 22, 1968
SE1986Oct03H.png
October 3, 1986
SE2004Oct14P.png
October 14, 2004
555657
SE2022Oct25P.png
October 25, 2022
SE2040Nov04P.png
November 4, 2040
SE2058Nov16P.png
November 16, 2058
585960
SE2076Nov26P.png
November 26, 2076
SE2094Dec07P.png
December 7, 2094
Saros124 60van73 SE2112Dec19P.jpg
December 19, 2112
616263
Saros124 61van73 SE2130Dec30P.jpg
December 30, 2130
Saros124 62van73 SE2149Jan09P.jpg
January 9, 2149
Saros124 63van73 SE2167Jan21P.jpg
January 21, 2167
64
Saros124 64van73 SE2185Jan31P.jpg
January 31, 2185

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

22 eclipse events between February 23, 1830 and July 19, 1917
February 22–23December 11–12September 29–30July 18–19May 6–7
108110112114116
SE1830Feb23P.gif
February 23, 1830
SE1841Jul18P.gif
July 18, 1841
Saros116 63van70 SE1845May06A.jpg
May 6, 1845
118120122124126
SE1849Feb23A.gif
February 23, 1849
SE1852Dec11T.gif
December 11, 1852
SE1856Sep29A.gif
September 29, 1856
SE1860Jul18T.gif
July 18, 1860
SE1864May06H.gif
May 6, 1864
128130132134136
SE1868Feb23A.gif
February 23, 1868
SE1871Dec12T.gif
December 12, 1871
SE1875Sep29A.gif
September 29, 1875
SE1879Jul19A.png
July 19, 1879
SE1883May06T.png
May 6, 1883
138140142144146
SE1887Feb22A.png
February 22, 1887
SE1890Dec12H.gif
December 12, 1890
SE1894Sep29T.gif
September 29, 1894
SE1898Jul18A.gif
July 18, 1898
SE1902May07P.png
May 7, 1902
148150152154
SE1906Feb23P.png
February 23, 1906
SE1909Dec12P.png
December 12, 1909
SE1913Sep30P.png
September 30, 1913
SE1917Jul19P.png
July 19, 1917

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1805Dec21A.gif
December 21, 1805
(Saros 119)
SE1816Nov19T.gif
November 19, 1816
(Saros 120)
SE1827Oct20H.gif
October 20, 1827
(Saros 121)
SE1838Sep18A.gif
September 18, 1838
(Saros 122)
SE1849Aug18T.gif
August 18, 1849
(Saros 123)
SE1860Jul18T.gif
July 18, 1860
(Saros 124)
SE1871Jun18A.gif
June 18, 1871
(Saros 125)
SE1882May17T.png
May 17, 1882
(Saros 126)
SE1893Apr16T.png
April 16, 1893
(Saros 127)
SE1904Mar17A.png
March 17, 1904
(Saros 128)
SE1915Feb14A.png
February 14, 1915
(Saros 129)
SE1926Jan14T.png
January 14, 1926
(Saros 130)
SE1936Dec13A.png
December 13, 1936
(Saros 131)
SE1947Nov12A.png
November 12, 1947
(Saros 132)
SE1958Oct12T.png
October 12, 1958
(Saros 133)
SE1969Sep11A.png
September 11, 1969
(Saros 134)
SE1980Aug10A.png
August 10, 1980
(Saros 135)
SE1991Jul11T.png
July 11, 1991
(Saros 136)
SE2002Jun10A.png
June 10, 2002
(Saros 137)
SE2013May10A.png
May 10, 2013
(Saros 138)
SE2024Apr08T.png
April 8, 2024
(Saros 139)
SE2035Mar09A.png
March 9, 2035
(Saros 140)
SE2046Feb05A.png
February 5, 2046
(Saros 141)
SE2057Jan05T.png
January 5, 2057
(Saros 142)
SE2067Dec06H.png
December 6, 2067
(Saros 143)
SE2078Nov04A.png
November 4, 2078
(Saros 144)
SE2089Oct04T.png
October 4, 2089
(Saros 145)
SE2100Sep04T.png
September 4, 2100
(Saros 146)
SE2111Aug04A.png
August 4, 2111
(Saros 147)
Saros148 27van75 SE2122Jul04T.jpg
July 4, 2122
(Saros 148)
SE2133Jun03T.png
June 3, 2133
(Saros 149)
Saros150 24van71 SE2144May03A.jpg
May 3, 2144
(Saros 150)
SE2155Apr02A.png
April 2, 2155
(Saros 151)
Saros152 21van70 SE2166Mar02T.jpg
March 2, 2166
(Saros 152)
Saros153 18van70 SE2177Jan29A.jpg
January 29, 2177
(Saros 153)
Saros154 16van71 SE2187Dec29A.jpg
December 29, 2187
(Saros 154)
SE2198Nov28T.png
November 28, 2198
(Saros 155)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1802Aug28A.png
August 28, 1802
(Saros 122)
SE1831Aug07T.gif
August 7, 1831
(Saros 123)
SE1860Jul18T.png
July 18, 1860
(Saros 124)
SE1889Jun28A.png
June 28, 1889
(Saros 125)
SE1918Jun08T.png
June 8, 1918
(Saros 126)
SE1947May20T.png
May 20, 1947
(Saros 127)
SE1976Apr29A.png
April 29, 1976
(Saros 128)
SE2005Apr08H.png
April 8, 2005
(Saros 129)
SE2034Mar20T.png
March 20, 2034
(Saros 130)
SE2063Feb28A.png
February 28, 2063
(Saros 131)
SE2092Feb07A.png
February 7, 2092
(Saros 132)
SE2121Jan19T.png
January 19, 2121
(Saros 133)
SE2149Dec30A.png
December 30, 2149
(Saros 134)
SE2178Dec09A.png
December 9, 2178
(Saros 135)

See also

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of February 26, 1998</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, February 26, 1998, with a magnitude of 1.0441. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.1 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of February 14, 1934</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit between Tuesday, February 13 and Wednesday, February 14, 1934, with a magnitude of 1.0321. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only 1.6 days after perigee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of October 12, 1958</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, October 12, 1958, with a magnitude of 1.0608. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 5.5 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of July 13, 2037</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Monday, July 13, 2037, with a magnitude of 1.0413. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.6 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of December 26, 2038</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Saturday, December 25 and Sunday, December 26, 2038, with a magnitude of 1.0268. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.7 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of September 12, 1950</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Monday, September 11, 1950 and Tuesday, September 12, 1950, with a magnitude of 1.0182. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.2 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of July 24, 2055</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Saturday, July 24, 2055, with a magnitude of 1.0359. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.9 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of August 3, 2073</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Thursday, August 3, 2073, with a magnitude of 1.0294. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.1 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of January 5, 2057</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Friday, January 5, 2057, with a magnitude of 1.0287. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.6 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of January 16, 2075</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, January 16, 2075, with a magnitude of 1.0311. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.5 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of January 27, 2093</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Tuesday, January 27, 2093, with a magnitude of 1.034. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.3 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of April 11, 2070</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, April 10 and Friday, April 11, 2070, with a magnitude of 1.0472. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.6 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of January 16, 2094</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Saturday, January 16, 2094, with a magnitude of 1.0342. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 10.5 hours before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of October 4, 2089</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit between Monday, October 3 and Tuesday, October 4, 2089, with a magnitude of 1.0333. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.3 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of October 12, 1939</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, October 12, 1939, with a magnitude of 1.0266. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.8 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of October 1, 1921</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 1, 1921, with a magnitude of 1.0293. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.9 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of August 29, 1886</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, August 29, 1886, with a magnitude of 1.0735. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 4 hours after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of December 22, 1870</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, December 22, 1870, with a magnitude of 1.0248. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.4 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of August 29, 1867</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, August 29, 1867, with a magnitude of 1.0344. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.5 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of December 12, 1871</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Tuesday, December 12, 1871, with a magnitude of 1.0465. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 10.5 hours before perigee, the Moon's apparent diameter was larger.

References

  1. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 5 September 2024.
  2. Coronal Mass Ejections from the Sun - Propagation and Near Earth Effects
  3. "Total Solar Eclipse of 1860 Jul 18". EclipseWise.com. Retrieved 5 September 2024.
  4. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. "NASA - Catalog of Solar Eclipses of Saros 124". eclipse.gsfc.nasa.gov.