Solar eclipse of August 18, 1868

Last updated
Solar eclipse of August 18, 1868
SE1868Aug18T.png
Map
Type of eclipse
NatureTotal
Gamma −0.0443
Magnitude 1.0756
Maximum eclipse
Duration407 s (6 min 47 s)
Coordinates 10°36′N102°12′E / 10.6°N 102.2°E / 10.6; 102.2
Max. width of band245 km (152 mi)
Times (UTC)
Greatest eclipse5:12:10
References
Saros 133 (37 of 72)
Catalog # (SE5000) 9207

A total solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, August 18, 1868 (also known as "The King of Siam's eclipse"), with a magnitude of 1.0756. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 6.5 days after perigee (on August 17, 1868, at 22:35 UTC), the Moon's apparent diameter was larger. [1]

Contents

The path of totality was visible from parts of modern-day Ethiopia, Eritrea, Djibouti, Yemen, India, the Andaman and Nicobar Islands, Myanmar, Thailand, Cambodia, Vietnam, Malaysia, Brunei, Indonesia, and Papua New Guinea. A partial solar eclipse was also visible for parts of East Africa, the Middle East, Central Asia, South Asia, Southeast Asia, Australia, and western Oceania.

The eclipse was predicted more precisely by King Mongkut of Thailand than it was by French astronomers. The eclipse allowed for the discovery of helium by both Pierre Janssen and Norman Lockyer, who observed Solar prominences with spectroscopes.

Observations

AFC location map.png
Red pog.svg
Fritsch
Red pog.svg
Bullock
Red pog.svg
Rennoldson
Red pog.svg
Herschel
Red pog.svg
Tietjen
Red pog.svg
Spörer
Red pog.svg
Tennant
Red pog.svg
Tisserand
Red pog.svg
Hennesy
Observation points of the solar eclipse

Several expeditions were sent to observe the eclipse.

Discovery of helium

French astronomer Pierre Janssen observed the eclipse from Guntur in Madras State, British India. It was the first total eclipse since Gustav Kirchhoff's 1859 theory that the Fraunhofer lines in the solar spectrum correspond to the emission line of the different chemical elements present in the Sun. Correspondingly, Janssen observed the eclipse with the aid of a spectroscope. He noticed a bright yellow line (λ  = 587.49 nm) in the spectra of the solar prominences that could not be due to sodium as had previously been assumed, and was subsequently able to observe the same line even without the need for an eclipse. The same result was found independently by British astronomer Norman Lockyer, and both Janssen's and Lockyer's communications were presented to the French Academy of Sciences on October 26, 1868. [6] [7]

King Mongkut's calculation

King Mongkut and party viewing a solar eclipse on the 18 August 1868. The King seated center in the middle of the pavilion, Sir Harry Ord (Governor of the Straits Settlements at Singapore) and the British party stands around, includes royal officials kneeling. King Mongkut Solar Eclipse Expedition.jpg
King Mongkut and party viewing a solar eclipse on the 18 August 1868. The King seated center in the middle of the pavilion, Sir Harry Ord (Governor of the Straits Settlements at Singapore) and the British party stands around, includes royal officials kneeling.

King Mongkut, also known as Rama IV of Siam, was able to calculate and predict the solar eclipse two years earlier. [8] The calculations were correct as to the place, the time and the type of the solar eclipse that would happen. The eclipse took place precisely as the king had predicted, the total phase lasting six minutes and 46 seconds. In fact, his calculations were better — by about two seconds — than those of the French astronomers, who acknowledged his accuracy. Mongkut was exposed to malaria, then developed chills and fever. He died on October 1, 1868. [9] According to the Thai Astronomical Society and NASA, this eclipse is known as "The King of Siam's eclipse". [8] [10]

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [11]

August 18, 1868 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1868 August 18 at 02:34:50.2 UTC
First Umbral External Contact1868 August 18 at 03:27:59.0 UTC
First Central Line1868 August 18 at 03:29:29.6 UTC
First Umbral Internal Contact1868 August 18 at 03:31:00.1 UTC
First Penumbral Internal Contact1868 August 18 at 04:24:13.7 UTC
Greatest Duration1868 August 18 at 05:08:35.7 UTC
Ecliptic Conjunction1868 August 18 at 05:11:42.5 UTC
Greatest Eclipse1868 August 18 at 05:12:09.6 UTC
Equatorial Conjunction1868 August 18 at 05:13:17.9 UTC
Last Penumbral Internal Contact1868 August 18 at 06:00:03.7 UTC
Last Umbral Internal Contact1868 August 18 at 06:53:18.8 UTC
Last Central Line1868 August 18 at 06:54:49.0 UTC
Last Umbral External Contact1868 August 18 at 06:56:19.2 UTC
Last Penumbral External Contact1868 August 18 at 07:49:29.4 UTC
August 18, 1868 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.07561
Eclipse Obscuration1.15693
Gamma−0.04434
Sun Right Ascension09h51m00.1s
Sun Declination+13°02'06.8"
Sun Semi-Diameter15'48.4"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension09h50m57.4s
Moon Declination+12°59'28.9"
Moon Semi-Diameter16'42.8"
Moon Equatorial Horizontal Parallax1°01'20.3"
ΔT2.2 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of August–September 1868
August 3
Descending node (full moon)
August 18
Ascending node (new moon)
September 2
Descending node (full moon)
SE1868Aug18T.png
Penumbral lunar eclipse
Lunar Saros 107
Total solar eclipse
Solar Saros 133
Penumbral lunar eclipse
Lunar Saros 145

Eclipses in 1868

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 133

Inex

Triad

Solar eclipses of 1866–1870

This eclipse is a member of a semester series . An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [12]

The partial solar eclipses on April 15, 1866 and October 8, 1866 occur in the previous lunar year eclipse set, and the solar eclipses on June 28, 1870 (partial) and December 22, 1870 (total) occur in the next lunar year eclipse set.

Solar eclipse series sets from 1866 to 1870
Descending node Ascending node
SarosMapGammaSarosMapGamma
108March 16, 1866
SE1866Mar16P.gif
Partial
1.4241113
118March 6, 1867
SE1867Mar06A.gif
Annular
0.7716123 August 29, 1867
SE1867Aug29T.png
Total
−0.7940
128February 23, 1868
SE1868Feb23A.gif
Annular
0.0706133 August 18, 1868
SE1868Aug18T.png
Total
−0.0443
138February 11, 1869
SE1869Feb11A.gif
Annular
−0.6251143 August 7, 1869
SE1869Aug07T.png
Total
0.6960
148January 31, 1870
SE1870Jan31P.gif
Partial
−1.2829153July 28, 1870
SE1870Jul28Pb.gif
Partial
1.5044

Saros 133

This eclipse is a part of Saros series 133, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on July 13, 1219. It contains annular eclipses from November 20, 1435 through January 13, 1526; a hybrid eclipse on January 24, 1544; and total eclipses from February 3, 1562 through June 21, 2373. The series ends at member 72 as a partial eclipse on September 5, 2499. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 25 at 1 minutes, 14 seconds on November 30, 1453, and the longest duration of totality was produced by member 61 at 6 minutes, 50 seconds on August 7, 1850. All eclipses in this series occur at the Moon’s ascending node of orbit. [13]

Series members 34–55 occur between 1801 and 2200:
343536
SE1814Jul17T.png
July 17, 1814
SE1832Jul27T.png
July 27, 1832
SE1850Aug07T.png
August 7, 1850
373839
SE1868Aug18T.png
August 18, 1868
SE1886Aug29T.png
August 29, 1886
SE1904Sep09T.png
September 9, 1904
404142
SE1922Sep21T.png
September 21, 1922
SE1940Oct01T.png
October 1, 1940
SE1958Oct12T.png
October 12, 1958
434445
SE1976Oct23T.png
October 23, 1976
SE1994Nov03T.png
November 3, 1994
SE2012Nov13T.png
November 13, 2012
464748
SE2030Nov25T.png
November 25, 2030
SE2048Dec05T.png
December 5, 2048
SE2066Dec17T.png
December 17, 2066
495051
SE2084Dec27T.png
December 27, 2084
SE2103Jan08T.png
January 8, 2103
SE2121Jan19T.png
January 19, 2121
525354
SE2139Jan30T.png
January 30, 2139
SE2157Feb09T.png
February 9, 2157
SE2175Feb21T.png
February 21, 2175
55
SE2193Mar03T.png
March 3, 2193

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

24 eclipse events between March 25, 1819 and August 20, 1906
March 25–26January 11–12October 30–31August 18–20June 6–7
107109111113115
SE1819Mar25P.gif
March 25, 1819
SE1823Jan12P.gif
January 12, 1823
SE1826Oct31P.gif
October 31, 1826
SE1830Aug18P.gif
August 18, 1830
SE1834Jun07P.gif
June 7, 1834
117119121123125
SE1838Mar25T.gif
March 25, 1838
SE1842Jan11A.gif
January 11, 1842
SE1845Oct30H.gif
October 30, 1845
SE1849Aug18T.gif
August 18, 1849
SE1853Jun06A.gif
June 6, 1853
127129131133135
SE1857Mar25T.gif
March 25, 1857
SE1861Jan11A.gif
January 11, 1861
SE1864Oct30A.gif
October 30, 1864
SE1868Aug18T.gif
August 18, 1868
SE1872Jun06A.gif
June 6, 1872
137139141143145
SE1876Mar25A.gif
March 25, 1876
SE1880Jan11T.gif
January 11, 1880
SE1883Oct30A.gif
October 30, 1883
SE1887Aug19T.png
August 19, 1887
SE1891Jun06A.gif
June 6, 1891
147149151153
SE1895Mar26P.gif
March 26, 1895
SE1899Jan11P.gif
January 11, 1899
SE1902Oct31P.png
October 31, 1902
SE1906Aug20P.png
August 20, 1906

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1803Feb21T.png
February 21, 1803
(Saros 127)
SE1814Jan21A.gif
January 21, 1814
(Saros 128)
SE1824Dec20Am.gif
December 20, 1824
(Saros 129)
SE1835Nov20T.png
November 20, 1835
(Saros 130)
SE1846Oct20A.png
October 20, 1846
(Saros 131)
SE1857Sep18A.png
September 18, 1857
(Saros 132)
SE1868Aug18T.png
August 18, 1868
(Saros 133)
SE1879Jul19A.png
July 19, 1879
(Saros 134)
SE1890Jun17A.png
June 17, 1890
(Saros 135)
SE1901May18T.png
May 18, 1901
(Saros 136)
SE1912Apr17H.png
April 17, 1912
(Saros 137)
SE1923Mar17A.png
March 17, 1923
(Saros 138)
SE1934Feb14T.png
February 14, 1934
(Saros 139)
SE1945Jan14A.png
January 14, 1945
(Saros 140)
SE1955Dec14A.png
December 14, 1955
(Saros 141)
SE1966Nov12T.png
November 12, 1966
(Saros 142)
SE1977Oct12T.png
October 12, 1977
(Saros 143)
SE1988Sep11A.png
September 11, 1988
(Saros 144)
SE1999Aug11T.png
August 11, 1999
(Saros 145)
SE2010Jul11T.png
July 11, 2010
(Saros 146)
SE2021Jun10A.png
June 10, 2021
(Saros 147)
SE2032May09A.png
May 9, 2032
(Saros 148)
SE2043Apr09T.png
April 9, 2043
(Saros 149)
SE2054Mar09P.png
March 9, 2054
(Saros 150)
SE2065Feb05P.png
February 5, 2065
(Saros 151)
SE2076Jan06T.png
January 6, 2076
(Saros 152)
SE2086Dec06P.png
December 6, 2086
(Saros 153)
SE2097Nov04A.png
November 4, 2097
(Saros 154)
Saros155 11van71 SE2108Oct05T.jpg
October 5, 2108
(Saros 155)
Saros156 07van69 SE2119Sep05P.jpg
September 5, 2119
(Saros 156)
Saros157 05van70 SE2130Aug04P.jpg
August 4, 2130
(Saros 157)
Saros158 05van70 SE2141Jul03P.jpg
July 3, 2141
(Saros 158)
Saros159 02van70 SE2152Jun03P.jpg
June 3, 2152
(Saros 159)
Saros161 01van72 SE2174Apr01P.jpg
April 1, 2174
(Saros 161)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1810Sep28A.gif
September 28, 1810
(Saros 131)
SE1839Sep07A.png
September 7, 1839
(Saros 132)
SE1868Aug18T.png
August 18, 1868
(Saros 133)
SE1897Jul29A.gif
July 29, 1897
(Saros 134)
SE1926Jul09A.png
July 9, 1926
(Saros 135)
SE1955Jun20T.png
June 20, 1955
(Saros 136)
SE1984May30A.png
May 30, 1984
(Saros 137)
SE2013May10A.png
May 10, 2013
(Saros 138)
SE2042Apr20T.png
April 20, 2042
(Saros 139)
SE2071Mar31A.png
March 31, 2071
(Saros 140)
SE2100Mar10A.png
March 10, 2100
(Saros 141)
SE2129Feb18T.png
February 18, 2129
(Saros 142)
SE2158Jan30A.png
January 30, 2158
(Saros 143)
SE2187Jan09A.png
January 9, 2187
(Saros 144)

Notes

  1. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 3 September 2024.
  2. Gustav Spoerer (1869). Die Reise nach Indien zur Beobachtung der totalen Sonnenfinsterniss am 18. August 1868: Vortrag gehalten in der Singakademie zu Berlin am 16. Januar 1869. Engelmann.
  3. Zeitschrift. D. Reimer. 1870. pp. 608–.
  4. Edward Walter Maunder, British Astronomical Association (1899). The Indian Eclipse, 1898: Report of the Expeditions Organized by the British Astronomical Association to Observe the Total Solar Eclipse of 1898 January 22. Hazell, Watson, and Viney. p.  113.
  5. Standard Encyclopaedia of Southern Africa
  6. Leggett, Hadley (August 18, 2009), Aug. 18, 1868: Helium Discovered During Total Solar Eclipse, wired.com, retrieved 2010-03-18.
  7. "Comptes rendus hebdomadaires des séances de l'Académie des sciences", C. R. Acad. Sci. Paris, 67: 836–841, 1868.
  8. 1 2 ๒๐๐ ปี พระบาทสมเด็จพระจอมเกล้าเจ้าอยู่หัว พระบิดาแห่งวิทยาศาสตร์ไทย. (in Thai)
  9. Montes-Bradley, Saul M.; Bradley, W.L. (10 January 2006). "Descendants of Danyell Broadley de West Morton" (964-word excerpt from Siam then, the foreign colony in Bangkok before and after Anna, Pasadena, California, 1981.). Eighth Generation. Thomas Osgood Bradley Foundation. Archived from the original on 2015-02-10. Retrieved 9 August 2013. King Mongkut's prediction surpassed those of European scientists. "In the 19th century, King Mongkut of Siam (now Thailand), an amateur astronomer, paid the ultimate price for eclipse-chasing: his life.
  10. Candey, Robert. M. (28 Sep 2009). "Solar Eclipses of Historical Interest". NASA. Retrieved 25 April 2017.
  11. "Total Solar Eclipse of 1868 Aug 18". EclipseWise.com. Retrieved 3 September 2024.
  12. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  13. "NASA - Catalog of Solar Eclipses of Saros 133". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of March 9, 2016</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Tuesday, March 8 and Wednesday, March 9, 2016, with a magnitude of 1.045. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's and the apparent path of the Sun and Moon intersect, blocking all direct sunlight and turning daylight into darkness; the Sun appears to be black with a halo around it. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.25 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of February 26, 1998</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, February 26, 1998, with a magnitude of 1.0441. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.1 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of February 5, 1962</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Monday, February 5, 1962, with a magnitude of 1.043. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 21.5 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of June 30, 1973</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Saturday, June 30, 1973, with a magnitude of 1.0792. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 11 hours after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of August 21, 1933</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Monday, August 21, 1933, with a magnitude of 0.9801. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 5.6 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of December 14, 1955</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, December 14, 1955, with a magnitude of 0.9176. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only about 24 hours before apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of December 26, 2038</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Saturday, December 25 and Sunday, December 26, 2038, with a magnitude of 1.0268. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.7 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of October 14, 2042</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, October 14, 2042, with a magnitude of 0.93. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only about 9 hours before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of May 18, 1901</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Saturday, May 18, 1901, with a magnitude of 1.068. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 23 hours after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of May 9, 1929</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, May 9, 1929, with a magnitude of 1.0562. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.7 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of January 14, 1926</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, January 14, 1926, with a magnitude of 1.043. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 17 hours after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of July 24, 2074</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, July 24, 2074, with a magnitude of 0.9838. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.6 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of January 27, 2074</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, January 27, 2074, with a magnitude of 0.9798. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.2 days after apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of April 16, 1893</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, April 16, 1893, with a magnitude of 1.0556. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.3 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of August 7, 1869</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit between Saturday, August 7 and Sunday, August 8, 1869, with a magnitude of 1.0551. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.6 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of January 3, 1908</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Friday, January 3 and Saturday, January 4, 1908, with a magnitude of 1.0437. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 14 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of July 20, 1944</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, July 20, 1944, with a magnitude of 0.97. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.6 days before apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of August 29, 1886</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, August 29, 1886, with a magnitude of 1.0735. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 4 hours after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of April 6, 1875</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, April 6, 1875, with a magnitude of 1.0547. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.2 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of January 22, 1879</span> Annular solar eclipse January 22, 1879

An annular solar eclipse occurred at the Moon's ascending node of orbit on Wednesday January 22, 1879, with a magnitude of 0.9700. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter will be near the average diameter because it occurred 8.1 days after perigee and 6.7 days before apogee.

References