Solar eclipse of January 14, 2029

Last updated
Solar eclipse of January 14, 2029
SE2029Jan14P.png
Map
Type of eclipse
NaturePartial
Gamma 1.0553
Magnitude 0.8714
Maximum eclipse
Coordinates 63°42′N114°12′W / 63.7°N 114.2°W / 63.7; -114.2
Times (UTC)
Greatest eclipse17:13:48
References
Saros 151 (15 of 72)
Catalog # (SE5000) 9571

A partial solar eclipse will occur at the Moon's ascending node of orbit on Sunday, January 14, 2029, [1] with a magnitude of 0.8714. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

Contents

This will be the first of four partial solar eclipses in 2029, with the others occurring on June 12, July 11, and December 5.

A partial eclipse will be visible for parts of North America and Central America.

Images

SE2029Jan14P.gif
Animated path

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [2]

January 14, 2029 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact2029 January 14 at 15:03:08.9 UTC
Greatest Eclipse2029 January 14 at 17:13:47.5 UTC
Ecliptic Conjunction2029 January 14 at 17:25:40.8 UTC
Equatorial Conjunction2029 January 14 at 17:48:06.7 UTC
Last Penumbral External Contact2029 January 14 at 19:24:17.6 UTC
January 14, 2029 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude0.87140
Eclipse Obscuration0.81600
Gamma1.05532
Sun Right Ascension19h47m03.1s
Sun Declination-21°09'31.8"
Sun Semi-Diameter16'15.6"
Sun Equatorial Horizontal Parallax08.9"
Moon Right Ascension19h45m53.5s
Moon Declination-20°12'32.3"
Moon Semi-Diameter15'20.6"
Moon Equatorial Horizontal Parallax0°56'18.7"
ΔT73.4 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of December 2028–January 2029
December 31
Descending node (full moon)
January 14
Ascending node (new moon)
Lunar eclipse chart close-2028Dec31.png SE2029Jan14P.png
Total lunar eclipse
Lunar Saros 125
Partial solar eclipse
Solar Saros 151

Eclipses in 2029

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 151

Inex

Triad

Solar eclipses of 2026–2029

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]

The partial solar eclipses on June 12, 2029 and December 5, 2029 occur in the next lunar year eclipse set.

Solar eclipse series sets from 2026 to 2029
Ascending node Descending node
SarosMapGammaSarosMapGamma
121 February 17, 2026
SE2026Feb17A.png
Annular
−0.97427126 August 12, 2026
SE2026Aug12T.png
Total
0.89774
131 February 6, 2027
SE2027Feb06A.png
Annular
−0.29515136 August 2, 2027
SE2027Aug02T.png
Total
0.14209
141 January 26, 2028
SE2028Jan26A.png
Annular
0.39014146 July 22, 2008
SE2028Jul22T.png
Total
−0.60557
151 January 14, 2029
SE2029Jan14P.png
Partial
1.05532156 July 11, 2029
SE2029Jul11P.png
Partial
−1.41908

Saros 151

This eclipse is a part of Saros series 151, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on August 14, 1776. It contains annular eclipses from February 28, 2101 through April 23, 2191; a hybrid eclipse on May 5, 2209; and total eclipses from May 16, 2227 through July 6, 2912. The series ends at member 72 as a partial eclipse on October 1, 3056. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity will be produced by member 19 at 2 minutes, 44 seconds on February 28, 2101, and the longest duration of totality will be produced by member 60 at 5 minutes, 41 seconds on May 22, 2840. All eclipses in this series occur at the Moon’s ascending node of orbit. [4]

Series members 3–24 occur between 1801 and 2200:
345
SE1812Sep05P.gif
September 5, 1812
SE1830Sep17P.gif
September 17, 1830
SE1848Sep27P.gif
September 27, 1848
678
SE1866Oct08P.gif
October 8, 1866
SE1884Oct19P.gif
October 19, 1884
SE1902Oct31P.png
October 31, 1902
91011
SE1920Nov10P.png
November 10, 1920
SE1938Nov21P.png
November 21, 1938
SE1956Dec02P.png
December 2, 1956
121314
SE1974Dec13P.png
December 13, 1974
SE1992Dec24P.png
December 24, 1992
SE2011Jan04P.png
January 4, 2011
151617
SE2029Jan14P.png
January 14, 2029
SE2047Jan26P.png
January 26, 2047
SE2065Feb05P.png
February 5, 2065
181920
SE2083Feb16P.png
February 16, 2083
SE2101Feb28A.png
February 28, 2101
Saros151 20van72 SE2119Mar11A.jpg
March 11, 2119
212223
Saros151 21van72 SE2137Mar21A.jpg
March 21, 2137
SE2155Apr02A.png
April 2, 2155
Saros151 23van72 SE2173Apr12A.jpg
April 12, 2173
24
SE2191Apr23A.png
April 23, 2191

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

20 eclipse events between June 10, 1964 and August 21, 2036
June 10–11March 28–29January 14–16November 3August 21–22
117119121123125
SE1964Jun10P.png
June 10, 1964
SE1968Mar28P.png
March 28, 1968
SE1972Jan16A.png
January 16, 1972
SE1975Nov03P.png
November 3, 1975
SE1979Aug22A.png
August 22, 1979
127129131133135
SE1983Jun11T.png
June 11, 1983
SE1987Mar29H.png
March 29, 1987
SE1991Jan15A.png
January 15, 1991
SE1994Nov03T.png
November 3, 1994
SE1998Aug22A.png
August 22, 1998
137139141143145
SE2002Jun10A.png
June 10, 2002
SE2006Mar29T.png
March 29, 2006
SE2010Jan15A.png
January 15, 2010
SE2013Nov03H.png
November 3, 2013
SE2017Aug21T.png
August 21, 2017
147149151153155
SE2021Jun10A.png
June 10, 2021
SE2025Mar29P.png
March 29, 2025
SE2029Jan14P.png
January 14, 2029
SE2032Nov03P.png
November 3, 2032
SE2036Aug21P.png
August 21, 2036

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipses on December 7, 2170 (part of Saros 164) and November 7, 2181 (part of Saros 165) are also a part of this series but are not included in the table below.

Series members between 1801 and 2105
SE1810Sep28A.gif
September 28, 1810
(Saros 131)
SE1821Aug27A.gif
August 27, 1821
(Saros 132)
SE1832Jul27T.gif
July 27, 1832
(Saros 133)
SE1843Jun27H.gif
June 27, 1843
(Saros 134)
SE1854May26A.png
May 26, 1854
(Saros 135)
SE1865Apr25T.png
April 25, 1865
(Saros 136)
SE1876Mar25A.gif
March 25, 1876
(Saros 137)
SE1887Feb22A.png
February 22, 1887
(Saros 138)
SE1898Jan22T.png
January 22, 1898
(Saros 139)
SE1908Dec23H.png
December 23, 1908
(Saros 140)
SE1919Nov22A.png
November 22, 1919
(Saros 141)
SE1930Oct21T.png
October 21, 1930
(Saros 142)
SE1941Sep21T.png
September 21, 1941
(Saros 143)
SE1952Aug20A.png
August 20, 1952
(Saros 144)
SE1963Jul20T.png
July 20, 1963
(Saros 145)
SE1974Jun20T.png
June 20, 1974
(Saros 146)
SE1985May19P.png
May 19, 1985
(Saros 147)
SE1996Apr17P.png
April 17, 1996
(Saros 148)
SE2007Mar19P.png
March 19, 2007
(Saros 149)
SE2018Feb15P.png
February 15, 2018
(Saros 150)
SE2029Jan14P.png
January 14, 2029
(Saros 151)
SE2039Dec15T.png
December 15, 2039
(Saros 152)
SE2050Nov14P.png
November 14, 2050
(Saros 153)
SE2061Oct13A.png
October 13, 2061
(Saros 154)
SE2072Sep12T.png
September 12, 2072
(Saros 155)
SE2083Aug13P.png
August 13, 2083
(Saros 156)
SE2094Jul12P.png
July 12, 2094
(Saros 157)
Saros158 03van70 SE2105Jun12P.jpg
June 12, 2105
(Saros 158)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1826Jun05P.gif
June 5, 1826
(Saros 144)
SE1855May16P.gif
May 16, 1855
(Saros 145)
SE1884Apr25P.gif
April 25, 1884
(Saros 146)
SE1913Apr06P.png
April 6, 1913
(Saros 147)
SE1942Mar16P.png
March 16, 1942
(Saros 148)
SE1971Feb25P.png
February 25, 1971
(Saros 149)
SE2000Feb05P.png
February 5, 2000
(Saros 150)
SE2029Jan14P.png
January 14, 2029
(Saros 151)
SE2057Dec26T.png
December 26, 2057
(Saros 152)
SE2086Dec06P.png
December 6, 2086
(Saros 153)
Saros154 12van71 SE2115Nov16A.jpg
November 16, 2115
(Saros 154)
Saros155 13van71 SE2144Oct26T.jpg
October 26, 2144
(Saros 155)
Saros156 10van69 SE2173Oct07A.jpg
October 7, 2173
(Saros 156)

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of July 1, 2011</span> 21st-century partial solar eclipse

A partial solar eclipse occurred at the Moon’s descending node of orbit on Friday, July 1, 2011, with a magnitude of 0.0971. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 5, 2000</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon’s descending node of orbit on Saturday, February 5, 2000, with a magnitude of 0.5795. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 1, 2000</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon’s ascending node of orbit on Saturday, July 1, 2000, with a magnitude of 0.4768. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 15, 2018</span> 21st-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit on Thursday, February 15, 2018, with a magnitude of 0.5991. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 11, 2029</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Wednesday, July 11, 2029, with a magnitude of 0.2303. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 12, 2029</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Tuesday, June 12, 2029, with a magnitude of 0.4576. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 5, 2029</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, December 5, 2029, with a magnitude of 0.8911. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 3, 2032</span> Future solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, November 3, 2032, with a magnitude of 0.8554. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of February 27, 2036</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Wednesday, February 27, 2036, with a magnitude of 0.6286. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 11, 2040</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, May 11, 2040, with a magnitude of 0.5306. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of November 4, 2040</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Sunday, November 4, 2040, with a magnitude of 0.8074. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of January 26, 2047</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Saturday, January 26, 2047, with a magnitude of 0.8907. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of July 22, 2047</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Monday, July 22, 2047, with a magnitude of 0.3604. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 16, 2047</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Monday, December 16, 2047, with a magnitude of 0.8816. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of June 21, 2058</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Friday, June 21, 2058, with a magnitude of 0.126. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of December 26, 2057</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, December 26, 2057, with a magnitude of 1.0348. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 16, 2058</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's descending node of orbit on Saturday, November 16, 2058, with a magnitude of 0.7644. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of May 22, 2058</span> Future partial solar eclipse

A partial solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, May 22, 2058, with a magnitude of 0.4141. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of March 16, 1942</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's descending node of orbit between Monday, March 16 and Tuesday, March 17, 1942, with a magnitude of 0.6393. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

<span class="mw-page-title-main">Solar eclipse of September 10, 1942</span> 20th-century partial solar eclipse

A partial solar eclipse occurred at the Moon's ascending node of orbit on Thursday, September 10, 1942, with a magnitude of 0.523. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.

References

  1. "January 14, 2029 Partial Solar Eclipse". timeanddate. Retrieved 13 August 2024.
  2. "Partial Solar Eclipse of 2029 Jan 14". EclipseWise.com. Retrieved 13 August 2024.
  3. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. "NASA - Catalog of Solar Eclipses of Saros 151". eclipse.gsfc.nasa.gov.