Solar eclipse of June 29, 1927

Last updated
Solar eclipse of June 29, 1927
SE1927Jun29T.png
Map
Type of eclipse
NatureTotal
Gamma 0.8163
Magnitude 1.0128
Maximum eclipse
Duration50 s (0 min 50 s)
Coordinates 78°06′N73°48′E / 78.1°N 73.8°E / 78.1; 73.8
Max. width of band77 km (48 mi)
Times (UTC)
Greatest eclipse6:23:27
References
Saros 145 (17 of 77)
Catalog # (SE5000) 9344

A total solar eclipse occurred at the Moon's ascending node of orbit between Tuesday, June 28 and Wednesday, June 29, 1927, [1] with a magnitude of 1.0128. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 20 hours after perigee (on June 28, 1927, at 10:40 UTC), the Moon's apparent diameter was larger. [2]

Contents

The path of totality crossed far northern Europe and Asia, including the United Kingdom, Norway, Sweden, Finland and Soviet Union (today's Russia) on June 29 (Wednesday), and finally passed Amukta in Alaska on June 28 (Tuesday). A partial eclipse was visible for parts of Europe, North Africa, North Asia, and northern North America.

Observation in England

This was the first total eclipse visible from British mainland soil for 203 years. The Astronomer Royal set up a camp to observe the eclipse from the grounds of Giggleswick School in North Yorkshire, which was on the line of totality. [3] [4] An observer at Southport, where an estimated quarter of a million people were on the shore to watch, described the eclipse for the Journal of the Royal Astronomical Society of Canada , describing it as "those memorable 23 seconds ... a landmark forever in the lives of those privileged to see for the first time the Sun's Corona, whose secrets are only revealed to us for some few minutes in each century." [5]

This eclipse is referenced in the closing pages of Dorothy L. Sayers' novel Unnatural Death. [6] Frances Brody's 2017 novel Death in the Stars is set at Giggleswick School while crowds were there to view the eclipse. [7]

Virginia Woolf recorded her impression of the eclipse, including the words "We had fallen. It was extinct. There was no colour. The earth was dead." [8]

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [9]

June 29, 1927 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1927 June 29 at 04:00:07.6 UTC
First Umbral External Contact1927 June 29 at 05:20:27.1 UTC
First Central Line1927 June 29 at 05:20:38.0 UTC
First Umbral Internal Contact1927 June 29 at 05:20:49.1 UTC
Greatest Duration1927 June 29 at 06:21:22.6 UTC
Greatest Eclipse1927 June 29 at 06:23:27.1 UTC
Equatorial Conjunction1927 June 29 at 06:27:51.0 UTC
Ecliptic Conjunction1927 June 29 at 06:32:16.1 UTC
Last Umbral Internal Contact1927 June 29 at 07:26:05.2 UTC
Last Central Line1927 June 29 at 07:26:13.4 UTC
Last Umbral External Contact1927 June 29 at 07:26:21.6 UTC
Last Penumbral External Contact1927 June 29 at 08:46:50.3 UTC
June 29, 1927 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.01277
Eclipse Obscuration1.02570
Gamma0.81630
Sun Right Ascension06h28m24.1s
Sun Declination+23°17'17.5"
Sun Semi-Diameter15'43.9"
Sun Equatorial Horizontal Parallax08.6"
Moon Right Ascension06h28m13.9s
Moon Declination+24°04'25.1"
Moon Semi-Diameter15'47.4"
Moon Equatorial Horizontal Parallax0°57'56.9"
ΔT24.4 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of June 1927
June 15
Descending node (full moon)
June 29
Ascending node (new moon)
Lunar eclipse chart close-1927Jun15.png SE1927Jun29T.png
Total lunar eclipse
Lunar Saros 119
Total solar eclipse
Solar Saros 145

Eclipses in 1927

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 145

Inex

Triad

Solar eclipses of 1924–1928

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [10]

The partial solar eclipses on March 5, 1924 and August 30, 1924 occur in the previous lunar year eclipse set, and the solar eclipses on May 19, 1928 and November 12, 1928 occur in the next lunar year eclipse set.

Solar eclipse series sets from 1924 to 1928
Ascending node Descending node
SarosMapGammaSarosMapGamma
115 July 31, 1924
SE1924Jul31P.png
Partial
−1.4459120 January 24, 1925
SE1925Jan24T.png
Total
0.8661
125 July 20, 1925
SE1925Jul20A.png
Annular
−0.7193130
Solar eclipse of 1926-01-14, John A. Miller.jpg
Totality in Sumatra, Indonesia
January 14, 1926
SE1926Jan14T.png
Total
0.1973
135 July 9, 1926
SE1926Jul09A.png
Annular
0.0538140 January 3, 1927
SE1927Jan03A.png
Annular
−0.4956
145 June 29, 1927
SE1927Jun29T.png
Total
0.8163150 December 24, 1927
SE1927Dec24P.png
Partial
−1.2416
155 June 17, 1928
SE1928Jun17P.png
Partial
1.5107

Saros 145

This eclipse is a part of Saros series 145, repeating every 18 years, 11 days, and containing 77 events. The series started with a partial solar eclipse on January 4, 1639. It contains an annular eclipse on June 6, 1891; a hybrid eclipse on June 17, 1909; and total eclipses from June 29, 1927 through September 9, 2648. The series ends at member 77 as a partial eclipse on April 17, 3009. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of annularity was produced by member 15 at 6 seconds (by default) on June 6, 1891, and the longest duration of totality will be produced by member 50 at 7 minutes, 12 seconds on June 25, 2522. All eclipses in this series occur at the Moon’s ascending node of orbit. [11]

Series members 10–32 occur between 1801 and 2200:
101112
SE1801Apr13P.png
April 13, 1801
SE1819Apr24P.png
April 24, 1819
SE1837May04P.png
May 4, 1837
131415
SE1855May16P.png
May 16, 1855
SE1873May26P.png
May 26, 1873
SE1891Jun06A.png
June 6, 1891
161718
SE1909Jun17H.png
June 17, 1909
SE1927Jun29T.png
June 29, 1927
1945Jul09T.png
July 9, 1945
192021
SE1963Jul20T.png
July 20, 1963
SE1981Jul31T.png
July 31, 1981
SE1999Aug11T.png
August 11, 1999
222324
SE2017Aug21T.png
August 21, 2017
SE2035Sep02T.png
September 2, 2035
SE2053Sep12T.png
September 12, 2053
252627
SE2071Sep23T.png
September 23, 2071
SE2089Oct04T.png
October 4, 2089
SE2107Oct16T.png
October 16, 2107
282930
SE2125Oct26T.png
October 26, 2125
SE2143Nov07T.png
November 7, 2143
SE2161Nov17T.png
November 17, 2161
3132
SE2179Nov28T.png
November 28, 2179
SE2197Dec09T.png
December 9, 2197

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

23 eclipse events between February 3, 1859 and June 29, 1946
February 1–3November 21–22September 8–10June 28–29April 16–18
109111113115117
SE1859Feb03P.png
February 3, 1859
SE1862Nov21P.gif
November 21, 1862
SE1870Jun28P.gif
June 28, 1870
SE1874Apr16T.gif
April 16, 1874
119121123125127
SE1878Feb02A.gif
February 2, 1878
SE1881Nov21A.gif
November 21, 1881
SE1885Sep08T.png
September 8, 1885
SE1889Jun28A.png
June 28, 1889
SE1893Apr16T.png
April 16, 1893
129131133135137
SE1897Feb01A.gif
February 1, 1897
SE1900Nov22A.gif
November 22, 1900
SE1904Sep09T.png
September 9, 1904
SE1908Jun28A.png
June 28, 1908
SE1912Apr17H.png
April 17, 1912
139141143145147
SE1916Feb03T.png
February 3, 1916
SE1919Nov22A.png
November 22, 1919
SE1923Sep10T.png
September 10, 1923
SE1927Jun29T.png
June 29, 1927
SE1931Apr18P.png
April 18, 1931
149151153155
SE1935Feb03P.png
February 3, 1935
SE1938Nov21P.png
November 21, 1938
SE1942Sep10P.png
September 10, 1942
SE1946Jun29P.png
June 29, 1946

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

The partial solar eclipses on November 16, 2134 (part of Saros 164) and October 16, 2145 (part of Saros 165) are also a part of this series but are not included in the table below.

Series members between 1801 and 2069
SE1807Jun06H.png
June 6, 1807
(Saros 134)
SE1818May05A.gif
May 5, 1818
(Saros 135)
SE1829Apr03T.gif
April 3, 1829
(Saros 136)
SE1840Mar04A.png
March 4, 1840
(Saros 137)
SE1851Feb01A.gif
February 1, 1851
(Saros 138)
SE1861Dec31T.gif
December 31, 1861
(Saros 139)
SE1872Nov30H.gif
November 30, 1872
(Saros 140)
SE1883Oct30A.gif
October 30, 1883
(Saros 141)
SE1894Sep29T.gif
September 29, 1894
(Saros 142)
SE1905Aug30T.png
August 30, 1905
(Saros 143)
SE1916Jul30A.png
July 30, 1916
(Saros 144)
SE1927Jun29T.png
June 29, 1927
(Saros 145)
SE1938May29T.png
May 29, 1938
(Saros 146)
SE1949Apr28P.png
April 28, 1949
(Saros 147)
SE1960Mar27P.png
March 27, 1960
(Saros 148)
SE1971Feb25P.png
February 25, 1971
(Saros 149)
SE1982Jan25P.png
January 25, 1982
(Saros 150)
SE1992Dec24P.png
December 24, 1992
(Saros 151)
SE2003Nov23T.png
November 23, 2003
(Saros 152)
SE2014Oct23P.png
October 23, 2014
(Saros 153)
SE2025Sep21P.png
September 21, 2025
(Saros 154)
SE2036Aug21P.png
August 21, 2036
(Saros 155)
SE2047Jul22P.png
July 22, 2047
(Saros 156)
SE2058Jun21P.png
June 21, 2058
(Saros 157)
SE2069May20P.png
May 20, 2069
(Saros 158)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1811Sep17A.gif
September 17, 1811
(Saros 141)
SE1840Aug27T.gif
August 27, 1840
(Saros 142)
SE1869Aug07T.png
August 7, 1869
(Saros 143)
SE1898Jul18A.png
July 18, 1898
(Saros 144)
SE1927Jun29T.png
June 29, 1927
(Saros 145)
SE1956Jun08T.png
June 8, 1956
(Saros 146)
SE1985May19P.png
May 19, 1985
(Saros 147)
SE2014Apr29A.png
April 29, 2014
(Saros 148)
SE2043Apr09T.png
April 9, 2043
(Saros 149)
SE2072Mar19P.png
March 19, 2072
(Saros 150)
SE2101Feb28A.png
February 28, 2101
(Saros 151)
Saros152 19van70 SE2130Feb08T.jpg
February 8, 2130
(Saros 152)
Saros153 17van70 SE2159Jan19A.jpg
January 19, 2159
(Saros 153)
Saros154 16van71 SE2187Dec29A.jpg
December 29, 2187
(Saros 154)

See also

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of May 22, 2096</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit between Monday, May 21 and Tuesday, May 22, 2096, with a magnitude of 1.0737. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 13 hours after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of February 14, 1934</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit between Tuesday, February 13 and Wednesday, February 14, 1934, with a magnitude of 1.0321. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only 1.6 days after perigee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of September 2, 2035</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit between Saturday, September 1 and Sunday, September 2, 2035, with a magnitude of 1.032. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.9 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of December 26, 2038</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Saturday, December 25 and Sunday, December 26, 2038, with a magnitude of 1.0268. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.7 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of April 30, 1957</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Tuesday, April 30, 1957, with a magnitude of 0.9799. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 6.1 days after apogee, the Moon's apparent diameter was smaller.

<span class="mw-page-title-main">Solar eclipse of October 23, 1957</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, October 23, 1957, with a magnitude of 1.0013. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.4 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of January 16, 2075</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, January 16, 2075, with a magnitude of 1.0311. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.5 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of October 21, 1930</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Tuesday, October 21 and Wednesday, October 22, 1930, with a magnitude of 1.023. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.6 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of September 12, 2053</span> Total eclipse

A total solar eclipse will take place at the Moon's ascending node of orbit on Friday, September 12, 2053, with a magnitude of 1.0328. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.7 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of March 20, 2053</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, March 20, 2053, with a magnitude of 0.9919. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 5.6 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of December 26, 2057</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Tuesday, December 25 and Wednesday, December 26, 2057, with a magnitude of 1.0348. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 6.5 hours before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of September 23, 2071</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, September 23, 2071, with a magnitude of 1.0333. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.5 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of October 4, 2089</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit between Monday, October 3 and Tuesday, October 4, 2089, with a magnitude of 1.0333. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.3 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of December 23, 1908</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, December 23, 1908, with a magnitude of 1.0024. It was a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.1 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of June 17, 1909</span> Hybrid eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit between Thursday, June 17 and Friday, June 18, 1909, with a magnitude of 1.0065. It was a hybrid event, with a long section of its path as total, and smaller sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 5.4 days after perigee and 7.5 days before apogee.

<span class="mw-page-title-main">Solar eclipse of October 12, 1939</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, October 12, 1939, with a magnitude of 1.0266. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.8 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of May 29, 1938</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Sunday, May 29, 1938, with a magnitude of 1.0552. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.2 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of October 1, 1921</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, October 1, 1921, with a magnitude of 1.0293. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.9 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of January 3, 1927</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit between Monday, January 3 and Tuesday, January 4, 1927, with a magnitude of 0.9995. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The Moon's apparent diameter was near the average diameter because it occurred 8.6 days after apogee and 3.3 days before perigee.

<span class="mw-page-title-main">Solar eclipse of June 26, 1824</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Saturday, June 26 and Sunday, June 27, 1824, with a magnitude of 1.0578. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.9 days before perigee, the Moon's apparent diameter was larger.

References

  1. "June 29, 1927 Total Solar Eclipse". timeanddate. Retrieved 3 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 3 August 2024.
  3. "With the Astronomer Royal". The Guardian. 30 June 1927. Retrieved 9 January 2023.
  4. "Eclipse archive". news.bbc.co.uk. BBC News. 17 August 1999. Retrieved 9 January 2023.
  5. Seeley, Sylvia (1927). "The total eclipse of June 29, 1927 as seen by a spectator at Southport, England". Journal of the Royal Astronomical Society of Canada. 21: 328-332. Bibcode:1927JRASC..21..328S . Retrieved 9 January 2023 via SAO/NASA Astrophysics Data System (ADS).
  6. "Unnatural Death".
  7. "Death in the Stars: the ninth Kate Shackleton mystery by Frances Brody". frances-brody.com. Retrieved 9 January 2023.
  8. Popova, Maria (9 May 2018). "Darkness in the Celestial Lighthouse: Virginia Woolf's Arresting 1927 Account of a Total Solar Eclipse". The Marginalian. Retrieved 9 January 2023.
  9. "Total Solar Eclipse of 1927 Jun 29". EclipseWise.com. Retrieved 3 August 2024.
  10. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  11. "NASA - Catalog of Solar Eclipses of Saros 145". eclipse.gsfc.nasa.gov.

Sources