Solar eclipse of May 22, 2096

Last updated
Solar eclipse of May 22, 2096
SE2096May22T.png
Map
Type of eclipse
NatureTotal
Gamma 0.1196
Magnitude 1.0737
Maximum eclipse
Duration367 s (6 min 7 s)
Coordinates 27°18′N153°24′E / 27.3°N 153.4°E / 27.3; 153.4
Max. width of band241 km (150 mi)
Times (UTC)
Greatest eclipse1:37:14
References
Saros 139 (34 of 71)
Catalog # (SE5000) 9724

A total solar eclipse will occur at the Moon's ascending node of orbit between Monday, May 21 and Tuesday, May 22, 2096, [1] with a magnitude of 1.0737. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 13 hours after perigee (on May 21, 2096, at 12:30 UTC), the Moon's apparent diameter will be larger. [2]

Contents

The path of totality will be visible from parts of Indonesia and the Philippines. Totality will end approximately 1000 miles (1600 km) off the United States West Coast. A partial solar eclipse will also be visible for parts of Southeast Asia, East Asia, northern Australia, Hawaii, and northwestern North America.

Overall, at 6 minutes and 7 seconds, this will be the third longest total solar eclipse of the 21st century. The only two longer eclipses in the century are July 22, 2009 and August 2, 2027. The longest duration of this eclipse on land will be seen in Surigao del Sur, the Philippines, 4 minutes and 38 seconds.

This will be the first eclipse of saros series 139 to exceed series 136 in length of totality. The length of totality for saros 139 is increasing, while that of Saros 136 is decreasing.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]

May 22, 2096 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact2096 May 21 at 22:59:57.5 UTC
First Umbral External Contact2096 May 21 at 23:53:30.4 UTC
First Central Line2096 May 21 at 23:54:59.3 UTC
First Umbral Internal Contact2096 May 21 at 23:56:28.1 UTC
First Penumbral Internal Contact2096 May 22 at 00:50:37.3 UTC
Greatest Eclipse2096 May 22 at 01:37:14.1 UTC
Ecliptic Conjunction2096 May 22 at 01:38:27.4 UTC
Equatorial Conjunction2096 May 22 at 01:41:02.1 UTC
Greatest Duration2096 May 22 at 01:42:24.7 UTC
Last Penumbral Internal Contact2096 May 22 at 02:23:45.4 UTC
Last Umbral Internal Contact2096 May 22 at 03:17:58.5 UTC
Last Central Line2096 May 22 at 03:19:26.7 UTC
Last Umbral External Contact2096 May 22 at 03:20:54.9 UTC
Last Penumbral External Contact2096 May 22 at 04:14:30.6 UTC
May 22, 2096 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.07371
Eclipse Obscuration1.15285
Gamma0.11960
Sun Right Ascension03h59m45.5s
Sun Declination+20°33'28.2"
Sun Semi-Diameter15'48.1"
Sun Equatorial Horizontal Parallax08.7"
Moon Right Ascension03h59m36.3s
Moon Declination+20°40'26.9"
Moon Semi-Diameter16'40.8"
Moon Equatorial Horizontal Parallax1°01'13.0"
ΔT120.1 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.

Eclipse season of May–June 2096
May 7
Descending node (full moon)
May 22
Ascending node (new moon)
June 6
Descending node (full moon)
SE2096May22T.png
Penumbral lunar eclipse
Lunar Saros 113
Total solar eclipse
Solar Saros 139
Penumbral lunar eclipse
Lunar Saros 151

Eclipses in 2096

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 139

Inex

Triad

Solar eclipses of 2094–2098

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]

The solar eclipses on January 16, 2094 (total) and July 12, 2094 (partial) occur in the previous lunar year eclipse set, and the partial solar eclipses on April 1, 2098 and September 25, 2098 occur in the next lunar year eclipse set.

Solar eclipse series sets from 2094 to 2098
Ascending node Descending node
SarosMapGammaSarosMapGamma
119 June 13, 2094
SE2094Jun13P.png
Partial
−1.4613124 December 7, 2094
SE2094Dec07P.png
Partial
1.1547
129 June 2, 2095
SE2095Jun02T.png
Total
−0.6396134 November 27, 2095
SE2095Nov27A.png
Annular
0.4903
139 May 22, 2096
SE2096May22T.png
Total
0.1196144 November 15, 2096
SE2096Nov15A.png
Annular
−0.20
149 May 11, 2097
SE2097May11T.png
Total
0.8516154 November 4, 2097
SE2097Nov04A.png
Annular
−0.8926
159May 1, 2098164 October 24, 2098
SE2098Oct24P.png
Partial
−1.5407

Saros 139

This eclipse is a part of Saros series 139, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on May 17, 1501. It contains hybrid eclipses from August 11, 1627 through December 9, 1825 and total eclipses from December 21, 1843 through March 26, 2601. There are no annular eclipses in this set. The series ends at member 71 as a partial eclipse on July 3, 2763. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality will be produced by member 61 at 7 minutes, 29.22 seconds on July 16, 2186. This date is the longest solar eclipse computed between 4000 BC and AD 6000. [5] All eclipses in this series occur at the Moon’s ascending node of orbit. [6]

Series members 18–39 occur between 1801 and 2200:
181920
SE1807Nov29H.png
November 29, 1807
SE1825Dec09H.png
December 9, 1825
SE1843Dec21T.png
December 21, 1843
212223
SE1861Dec31T.png
December 31, 1861
SE1880Jan11T.png
January 11, 1880
SE1898Jan22T.png
January 22, 1898
242526
SE1916Feb03T.png
February 3, 1916
SE1934Feb14T.png
February 14, 1934
SE1952Feb25T.png
February 25, 1952
272829
SE1970Mar07T.png
March 7, 1970
SE1988Mar18T.png
March 18, 1988
SE2006Mar29T.png
March 29, 2006
303132
SE2024Apr08T.png
April 8, 2024
SE2042Apr20T.png
April 20, 2042
SE2060Apr30T.png
April 30, 2060
333435
SE2078May11T.png
May 11, 2078
SE2096May22T.png
May 22, 2096
SE2114Jun03T.png
June 3, 2114
363738
SE2132Jun13T.png
June 13, 2132
SE2150Jun25T.png
June 25, 2150
SE2168Jul05T.png
July 5, 2168
39
SE2186Jul16T.png
July 16, 2186

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

23 eclipse events between August 3, 2054 and October 16, 2145
August 3–4May 22–24March 10–11December 27–29October 14–16
117119121123125
SE2054Aug03P.png
August 3, 2054
SE2058May22P.png
May 22, 2058
SE2062Mar11P.png
March 11, 2062
SE2065Dec27P.png
December 27, 2065
SE2069Oct15P.png
October 15, 2069
127129131133135
SE2073Aug03T.png
August 3, 2073
SE2077May22T.png
May 22, 2077
SE2081Mar10A.png
March 10, 2081
SE2084Dec27T.png
December 27, 2084
SE2088Oct14A.png
October 14, 2088
137139141143145
SE2092Aug03A.png
August 3, 2092
SE2096May22T.png
May 22, 2096
SE2100Mar10A.png
March 10, 2100
SE2103Dec29A.png
December 29, 2103
SE2107Oct16T.png
October 16, 2107
147149151153155
SE2111Aug04A.png
August 4, 2111
SE2115May24T.png
May 24, 2115
Saros151 20van72 SE2119Mar11A.jpg
March 11, 2119
Saros153 15van70 SE2122Dec28A.jpg
December 28, 2122
SE2126Oct16T.png
October 16, 2126
157159161163165
Saros157 05van70 SE2130Aug04P.jpg
August 4, 2130
Saros159 01van70 SE2134May23P.jpg
May 23, 2134
Saros165 01van72 SE2145Oct16P.jpg
October 16, 2145

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1801Sep08P.png
September 8, 1801
(Saros 112)
SE1812Aug07P.gif
August 7, 1812
(Saros 113)
SE1823Jul08P.gif
July 8, 1823
(Saros 114)
SE1834Jun07P.gif
June 7, 1834
(Saros 115)
SE1845May06An.gif
May 6, 1845
(Saros 116)
SE1856Apr05T.gif
April 5, 1856
(Saros 117)
SE1867Mar06A.gif
March 6, 1867
(Saros 118)
SE1878Feb02A.gif
February 2, 1878
(Saros 119)
SE1889Jan01T.png
January 1, 1889
(Saros 120)
SE1899Dec03A.png
December 3, 1899
(Saros 121)
SE1910Nov02P.png
November 2, 1910
(Saros 122)
SE1921Oct01T.png
October 1, 1921
(Saros 123)
SE1932Aug31T.png
August 31, 1932
(Saros 124)
SE1943Aug01A.png
August 1, 1943
(Saros 125)
SE1954Jun30T.png
June 30, 1954
(Saros 126)
SE1965May30T.png
May 30, 1965
(Saros 127)
SE1976Apr29A.png
April 29, 1976
(Saros 128)
SE1987Mar29H.png
March 29, 1987
(Saros 129)
SE1998Feb26T.png
February 26, 1998
(Saros 130)
SE2009Jan26A.png
January 26, 2009
(Saros 131)
SE2019Dec26A.png
December 26, 2019
(Saros 132)
SE2030Nov25T.png
November 25, 2030
(Saros 133)
SE2041Oct25A.png
October 25, 2041
(Saros 134)
SE2052Sep22A.png
September 22, 2052
(Saros 135)
SE2063Aug24T.png
August 24, 2063
(Saros 136)
SE2074Jul24A.png
July 24, 2074
(Saros 137)
SE2085Jun22A.png
June 22, 2085
(Saros 138)
SE2096May22T.png
May 22, 2096
(Saros 139)
SE2107Apr23A.png
April 23, 2107
(Saros 140)
SE2118Mar22A.png
March 22, 2118
(Saros 141)
SE2129Feb18T.png
February 18, 2129
(Saros 142)
SE2140Jan20A.png
January 20, 2140
(Saros 143)
SE2150Dec19A.png
December 19, 2150
(Saros 144)
SE2161Nov17T.png
November 17, 2161
(Saros 145)
SE2172Oct17H.png
October 17, 2172
(Saros 146)
Saros147 32van80 SE2183Sep16A.jpg
September 16, 2183
(Saros 147)
Saros148 31van75 SE2194Aug16T.jpg
August 16, 2194
(Saros 148)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1806Dec10A.gif
December 10, 1806
(Saros 129)
SE1835Nov20T.gif
November 20, 1835
(Saros 130)
SE1864Oct30A.gif
October 30, 1864
(Saros 131)
SE1893Oct09A.png
October 9, 1893
(Saros 132)
SE1922Sep21T.png
September 21, 1922
(Saros 133)
SE1951Sep01A.png
September 1, 1951
(Saros 134)
SE1980Aug10A.png
August 10, 1980
(Saros 135)
SE2009Jul22T.png
July 22, 2009
(Saros 136)
SE2038Jul02A.png
July 2, 2038
(Saros 137)
SE2067Jun11A.png
June 11, 2067
(Saros 138)
SE2096May22T.png
May 22, 2096
(Saros 139)
SE2125May03A.png
May 3, 2125
(Saros 140)
SE2154Apr12A.png
April 12, 2154
(Saros 141)
SE2183Mar23T.png
March 23, 2183
(Saros 142)

Notes

  1. "May 21–22, 2096 Total Solar Eclipse". timeanddate. Retrieved 25 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 25 August 2024.
  3. "Total Solar Eclipse of 2096 May 22". EclipseWise.com. Retrieved 25 August 2024.
  4. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  5. Ten Millennium Catalog of Long Solar Eclipses, −3999 to +6000 (4000 BCE to 6000 CE) Fred Espenak.
  6. "NASA - Catalog of Solar Eclipses of Saros 139". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of April 30, 2060</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, April 30, 2060, with a magnitude of 1.066. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 18 hours after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of May 11, 2078</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, May 11, 2078, with a magnitude of 1.0701. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 16 hours after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of November 22, 1984</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Thursday, November 22 and Friday, November 23, 1984, with a magnitude of 1.0237. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.1 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of October 12, 1958</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, October 12, 1958, with a magnitude of 1.0608. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 5.5 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of December 26, 2038</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Saturday, December 25 and Sunday, December 26, 2038, with a magnitude of 1.0268. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.7 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of January 27, 2093</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Tuesday, January 27, 2093, with a magnitude of 1.034. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.3 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of September 4, 2100</span> Total solar eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Saturday, September 4, 2100, with a magnitude of 1.0402. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.5 days before perigee, the Moon's apparent diameter will be larger. This will be the last solar eclipse of the 21st century.

<span class="mw-page-title-main">Solar eclipse of December 6, 2067</span> Hybrid eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.4 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of June 11, 2067</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, June 11, 2067, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.3 days before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of December 16, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit between Sunday, December 16 and Monday, December 17, 2085, with a magnitude of 0.9971. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.7 days before perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of November 15, 2096</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit between Wednesday, November 14 and Thursday, November 15, 2096, with a magnitude of 0.9237. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 1.2 days before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of August 3, 2092</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, August 3, 2092, with a magnitude of 0.9794. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide. Occurring about 5.3 days after apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of October 4, 2089</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit between Monday, October 3 and Tuesday, October 4, 2089, with a magnitude of 1.0333. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.3 days after perigee, the Moon's apparent diameter will be larger.

<span class="mw-page-title-main">Solar eclipse of June 22, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.6 days before apogee, the Moon's apparent diameter will be smaller.

<span class="mw-page-title-main">Solar eclipse of April 16, 1893</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, April 16, 1893, with a magnitude of 1.0556. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.3 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of December 23, 1908</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, December 23, 1908, with a magnitude of 1.0024. It was a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.1 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of January 25, 1944</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Tuesday, January 25, 1944, with a magnitude of 1.0428. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 20 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of August 29, 1886</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, August 29, 1886, with a magnitude of 1.0735. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 4 hours after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of April 6, 1875</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, April 6, 1875, with a magnitude of 1.0547. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.2 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of March 25, 1857</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit between Wednesday, March 25 and Thursday, March 26, 1857, with a magnitude of 1.0534. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.1 days before perigee, the Moon's apparent diameter was larger.

References