Solar eclipse of July 20, 1944 | |
---|---|
Type of eclipse | |
Nature | Annular |
Gamma | −0.0314 |
Magnitude | 0.97 |
Maximum eclipse | |
Duration | 222 s (3 min 42 s) |
Coordinates | 19°00′N95°42′E / 19°N 95.7°E |
Max. width of band | 108 km (67 mi) |
Times (UTC) | |
Greatest eclipse | 5:43:13 |
References | |
Saros | 135 (35 of 71) |
Catalog # (SE5000) | 9385 |
An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, July 20, 1944, [1] with a magnitude of 0.97. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 4.6 days before apogee (on July 24, 1944, at 19:20 UTC), the Moon's apparent diameter was smaller. [2]
Annularity was visible from British Uganda (today's Uganda), Anglo-Egyptian Sudan (the part now belonging to South Sudan), British Kenya (today's Kenya), Ethiopia, British Somaliland (today's Somalia), British Raj (the part now belonging to India), Burma, Thailand, French Indochina (the parts now belonging to Laos and Vietnam), Philippines, South Seas Mandate in Japan (the part now belonging to Hatohobei, Palau) the Territory of New Guinea (now belonging to Papua New Guinea). A partial eclipse was visible for parts of East Africa, West Asia, Central Asia, South Asia, Southeast Asia, East Asia, and Australia.
Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [3]
Event | Time (UTC) |
---|---|
First Penumbral External Contact | 1944 July 20 at 02:43:03.9 UTC |
First Umbral External Contact | 1944 July 20 at 03:46:12.4 UTC |
First Central Line | 1944 July 20 at 03:47:41.2 UTC |
First Umbral Internal Contact | 1944 July 20 at 03:49:10.0 UTC |
First Penumbral Internal Contact | 1944 July 20 at 04:52:23.2 UTC |
Greatest Duration | 1944 July 20 at 05:41:10.0 UTC |
Ecliptic Conjunction | 1944 July 20 at 05:42:50.9 UTC |
Greatest Eclipse | 1944 July 20 at 05:43:12.7 UTC |
Equatorial Conjunction | 1944 July 20 at 05:43:33.9 UTC |
Last Penumbral Internal Contact | 1944 July 20 at 06:34:00.8 UTC |
Last Umbral Internal Contact | 1944 July 20 at 07:37:13.5 UTC |
Last Central Line | 1944 July 20 at 07:38:44.7 UTC |
Last Umbral External Contact | 1944 July 20 at 07:40:16.0 UTC |
Last Penumbral External Contact | 1944 July 20 at 08:43:26.9 UTC |
Parameter | Value |
---|---|
Eclipse Magnitude | 0.97004 |
Eclipse Obscuration | 0.94098 |
Gamma | −0.03135 |
Sun Right Ascension | 07h57m43.1s |
Sun Declination | +20°41'32.4" |
Sun Semi-Diameter | 15'44.4" |
Sun Equatorial Horizontal Parallax | 08.7" |
Moon Right Ascension | 07h57m42.4s |
Moon Declination | +20°39'49.3" |
Moon Semi-Diameter | 15'02.1" |
Moon Equatorial Horizontal Parallax | 0°55'10.8" |
ΔT | 26.5 s |
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight. The first and last eclipse in this sequence is separated by one synodic month.
July 6 Descending node (full moon) | July 20 Ascending node (new moon) | August 4 Descending node (full moon) |
---|---|---|
Penumbral lunar eclipse Lunar Saros 109 | Annular solar eclipse Solar Saros 135 | Penumbral lunar eclipse Lunar Saros 147 |
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [4]
The partial solar eclipses on March 16, 1942 and September 10, 1942 occur in the previous lunar year eclipse set, and the partial solar eclipses on May 30, 1946 and November 23, 1946 occur in the next lunar year eclipse set.
Solar eclipse series sets from 1942 to 1946 | ||||||
---|---|---|---|---|---|---|
Ascending node | Descending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
115 | August 12, 1942 Partial | −1.5244 | 120 | February 4, 1943 Total | 0.8734 | |
125 | August 1, 1943 Annular | −0.8041 | 130 | January 25, 1944 Total | 0.2025 | |
135 | July 20, 1944 Annular | −0.0314 | 140 | January 14, 1945 Annular | −0.4937 | |
145 | July 9, 1945 Total | 0.7356 | 150 | January 3, 1946 Partial | −1.2392 | |
155 | June 29, 1946 Partial | 1.4361 |
This eclipse is a part of Saros series 135, repeating every 18 years, 11 days, and containing 71 events. The series started with a partial solar eclipse on July 5, 1331. It contains annular eclipses from October 21, 1511 through February 24, 2305; hybrid eclipses on March 8, 2323 and March 18, 2341; and total eclipses from March 29, 2359 through May 22, 2449. The series ends at member 71 as a partial eclipse on August 17, 2593. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of annularity was produced by member 16 at 10 minutes, 41 seconds on December 24, 1601, and the longest duration of totality will be produced by member 62 at 2 minutes, 27 seconds on May 12, 2431. All eclipses in this series occur at the Moon’s ascending node of orbit. [5]
Series members 28–49 occur between 1801 and 2200: | ||
---|---|---|
28 | 29 | 30 |
May 5, 1818 | May 15, 1836 | May 26, 1854 |
31 | 32 | 33 |
June 6, 1872 | June 17, 1890 | June 28, 1908 |
34 | 35 | 36 |
July 9, 1926 | July 20, 1944 | July 31, 1962 |
37 | 38 | 39 |
August 10, 1980 | August 22, 1998 | September 1, 2016 |
40 | 42 | 42 |
September 12, 2034 | September 22, 2052 | October 4, 2070 |
43 | 44 | 45 |
October 14, 2088 | October 26, 2106 | November 6, 2124 |
46 | 47 | 48 |
November 17, 2142 | November 27, 2160 | December 9, 2178 |
49 | ||
December 19, 2196 |
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
22 eclipse events between December 13, 1898 and July 20, 1982 | ||||
---|---|---|---|---|
December 13–14 | October 1–2 | July 20–21 | May 9 | February 24–25 |
111 | 113 | 115 | 117 | 119 |
December 13, 1898 | July 21, 1906 | May 9, 1910 | February 25, 1914 | |
121 | 123 | 125 | 127 | 129 |
December 14, 1917 | October 1, 1921 | July 20, 1925 | May 9, 1929 | February 24, 1933 |
131 | 133 | 135 | 137 | 139 |
December 13, 1936 | October 1, 1940 | July 20, 1944 | May 9, 1948 | February 25, 1952 |
141 | 143 | 145 | 147 | 149 |
December 14, 1955 | October 2, 1959 | July 20, 1963 | May 9, 1967 | February 25, 1971 |
151 | 153 | 155 | ||
December 13, 1974 | October 2, 1978 | July 20, 1982 |
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
August 28, 1802 (Saros 122) | July 27, 1813 (Saros 123) | June 26, 1824 (Saros 124) | May 27, 1835 (Saros 125) | April 25, 1846 (Saros 126) |
March 25, 1857 (Saros 127) | February 23, 1868 (Saros 128) | January 22, 1879 (Saros 129) | December 22, 1889 (Saros 130) | November 22, 1900 (Saros 131) |
October 22, 1911 (Saros 132) | September 21, 1922 (Saros 133) | August 21, 1933 (Saros 134) | July 20, 1944 (Saros 135) | June 20, 1955 (Saros 136) |
May 20, 1966 (Saros 137) | April 18, 1977 (Saros 138) | March 18, 1988 (Saros 139) | February 16, 1999 (Saros 140) | January 15, 2010 (Saros 141) |
December 14, 2020 (Saros 142) | November 14, 2031 (Saros 143) | October 14, 2042 (Saros 144) | September 12, 2053 (Saros 145) | August 12, 2064 (Saros 146) |
July 13, 2075 (Saros 147) | June 11, 2086 (Saros 148) | May 11, 2097 (Saros 149) | April 11, 2108 (Saros 150) | March 11, 2119 (Saros 151) |
February 8, 2130 (Saros 152) | January 8, 2141 (Saros 153) | December 8, 2151 (Saros 154) | November 7, 2162 (Saros 155) | October 7, 2173 (Saros 156) |
September 4, 2184 (Saros 157) | August 5, 2195 (Saros 158) |
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
October 9, 1828 (Saros 131) | September 18, 1857 (Saros 132) | August 29, 1886 (Saros 133) |
August 10, 1915 (Saros 134) | July 20, 1944 (Saros 135) | June 30, 1973 (Saros 136) |
June 10, 2002 (Saros 137) | May 21, 2031 (Saros 138) | April 30, 2060 (Saros 139) |
April 10, 2089 (Saros 140) | March 22, 2118 (Saros 141) | March 2, 2147 (Saros 142) |
February 10, 2176 (Saros 143) |
An annular solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, July 31, 1962, with a magnitude of 0.9716. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 4.7 days before apogee, the Moon's apparent diameter was larger. This solar eclipse occurred 44 days after the final game of 1962 FIFA World Cup.
An annular solar eclipse occurred at the Moon's descending node of orbit on Monday, August 21, 1933, with a magnitude of 0.9801. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 5.6 days after apogee, the Moon's apparent diameter was smaller.
An annular solar eclipse will occur at the Moon's descending node of orbit on Monday, May 31, 2049, with a magnitude of 0.9631. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, February 6, 2027, with a magnitude of 0.9281. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's descending node of orbit on Wednesday, May 21, 2031, with a magnitude of 0.9589. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring only 3.8 days before apogee, the Moon's apparent diameter will be smaller.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, July 2, 2038, with a magnitude of 0.9911. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
A total solar eclipse will occur at the Moon's descending node of orbit between Saturday, December 25 and Sunday, December 26, 2038, with a magnitude of 1.0268. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Thursday, January 4, 1973, with a magnitude of 0.9303. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from Chile and Argentina.
An annular solar eclipse occurred at the Moon's descending node of orbit on Thursday, September 11, 1969, with a magnitude of 0.969. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from the Pacific Ocean, Peru, Bolivia and the southwestern tip of Brazilian state Mato Grosso. Places west of the International Date Line witnessed the eclipse on Friday, September 12, 1969.
An annular solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, March 18, 1969, with a magnitude of 0.9954. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from part of Indonesia, and two atolls in the Trust Territory of the Pacific Islands which belongs to the Federated States of Micronesia now.
An annular solar eclipse occurred at the Moon's descending node of orbit on Saturday, September 1, 1951, with a magnitude of 0.9747. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from the United States, Spanish Sahara, French West Africa, British Gold Coast, southern tip of French Equatorial Africa, Belgian Congo, Northern Rhodesia, Portuguese Mozambique, Nyasaland, and French Madagascar.
An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, January 16, 2056, with a magnitude of 0.9759. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, October 24, 2060, with a magnitude of 0.9277. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, July 24, 2074, with a magnitude of 0.9838. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's descending node of orbit between Wednesday, November 14 and Thursday, November 15, 2096, with a magnitude of 0.9237. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's descending node of orbit on Thursday, February 7, 2092, with a magnitude of 0.984. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, August 3, 2092, with a magnitude of 0.9794. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometers wide.
An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse occurred at the Moon's descending node of orbit on Sunday, April 7, 1940, with a magnitude of 0.9394. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 2.4 days after apogee, the Moon's apparent diameter was smaller.