Solar eclipse of June 11, 1983

Last updated
Solar eclipse of June 11, 1983
SE1983Jun11T.png
Map
Type of eclipse
NatureTotal
Gamma −0.4947
Magnitude 1.0524
Maximum eclipse
Duration311 s (5 min 11 s)
Coordinates 6°12′S114°12′E / 6.2°S 114.2°E / -6.2; 114.2
Max. width of band199 km (124 mi)
Times (UTC)
Greatest eclipse4:43:33
References
Saros 127 (56 of 82)
Catalog # (SE5000) 9472

A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, June 11, 1983, with a magnitude of 1.0524. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only 48 hours before perigee (on June 13, 1983), the Moon's apparent diameter was larger.

Contents

The path of totality went through Christmas Islands, Indonesia, Papua New Guinea, and terminated in Vanuatu. Maximum eclipse occurred off the Indonesian island of Madura. Major Indonesian cities witnessed totality, including Yogyakarta, Semarang, Surabaya, and Makassar, in addition to Port Moresby in Papua New Guinea.

Restrictions of observation

To avoid blindness, Indonesian dictator president Suharto prohibited local people from observing the eclipse directly through then Information Minister Harmoko, only allowing foreigners to observe from faraway places. Besides the requirements of closing and draping over all windows and airshafts, children were asked to hide themselves in cupboards and below desks as the eclipsing sun's rays were said to be more dangerous to children than to adults. They were allowed to watch a live broadcast of the eclipse occurring over Borobudur Temple in Magelang, Central Java, on state-owned TV channel TVRI. Because of the difference in restriction's intensity between regions, some locals did observe it. [1]

Observation

The Chinese Eclipse Observation Team formed by Beijing Astronomical Observatory (now incorporated into the National Astronomical Observatories of China), Purple Mountain Observatory and Nanjing Astronomical Instrument Factory conducted observation in Port Moresby. Observation in Port Moresby was successful due to the cloudless weather during the eclipse, compared with the cloudy weather in Yogyakarta where teams from many countries went. The Chinese team did spectrum observations of the chromosphere and corona, the broadband corona luminosity and polarization, and the coloured photography of the whole eclipse process. [2]

Eclipses in 1983

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 127

Inex

Triad

Solar eclipses of 1982–1985

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [3]

The partial solar eclipses on January 25, 1982 and July 20, 1982 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 1982 to 1985
Ascending node Descending node
SarosMapGammaSarosMapGamma
117 June 21, 1982
SE1982Jun21P.png
Partial
−1.2102122 December 15, 1982
SE1982Dec15P.png
Partial
1.1293
127 June 11, 1983
SE1983Jun11T.png
Total
−0.4947132 December 4, 1983
SE1983Dec04A.png
Annular
0.4015
137 May 30, 1984
SE1984May30A.png
Annular
0.2755142
Solar eclipse of 22 November 1984.JPG
Partial in Gisborne,
New Zealand
November 22, 1984
SE1984Nov22T.png
Total
−0.3132
147 May 19, 1985
SE1985May19P.png
Partial
1.072152 November 12, 1985
SE1985Nov12T.png
Total
−0.9795

Saros 127

This eclipse is a part of Saros series 127, repeating every 18 years, 11 days, and containing 82 events. The series started with a partial solar eclipse on October 10, 991 AD. It contains total eclipses from May 14, 1352 through August 15, 2091. There are no annular or hybrid eclipses in this set. The series ends at member 82 as a partial eclipse on March 21, 2452. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 31 at 5 minutes, 40 seconds on August 30, 1532. All eclipses in this series occur at the Moon’s ascending node of orbit. [4]

Series members 46–68 occur between 1801 and 2200:
464748
SE1803Feb21T.png
February 21, 1803
SE1821Mar04T.gif
March 4, 1821
SE1839Mar15T.gif
March 15, 1839
495051
SE1857Mar25T.gif
March 25, 1857
SE1875Apr06T.png
April 6, 1875
SE1893Apr16T.png
April 16, 1893
525354
SE1911Apr28T.png
April 28, 1911
SE1929May09T.png
May 9, 1929
SE1947May20T.png
May 20, 1947
555657
SE1965May30T.png
May 30, 1965
SE1983Jun11T.png
June 11, 1983
SE2001Jun21T.png
June 21, 2001
585960
SE2019Jul02T.png
July 2, 2019
SE2037Jul13T.png
July 13, 2037
SE2055Jul24T.png
July 24, 2055
616263
SE2073Aug03T.png
August 3, 2073
SE2091Aug15T.png
August 15, 2091
Saros127 63van82 SE2109Aug26P.jpg
August 26, 2109
646566
Saros127 64van82 SE2127Sep06P.jpg
September 6, 2127
Saros127 65van82 SE2145Sep16P.jpg
September 16, 2145
Saros127 66van82 SE2163Sep28P.jpg
September 28, 2163
6768
Saros127 67van82 SE2181Oct08P.jpg
October 8, 2181
Saros127 68van82 SE2199Oct19P.jpg
October 19, 2199

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.

20 eclipse events between June 10, 1964 and August 21, 2036
June 10–11March 28–29January 14–16November 3August 21–22
117119121123125
SE1964Jun10P.png
June 10, 1964
SE1968Mar28P.png
March 28, 1968
SE1972Jan16A.png
January 16, 1972
SE1975Nov03P.png
November 3, 1975
SE1979Aug22A.png
August 22, 1979
127129131133135
SE1983Jun11T.png
June 11, 1983
SE1987Mar29H.png
March 29, 1987
SE1991Jan15A.png
January 15, 1991
SE1994Nov03T.png
November 3, 1994
SE1998Aug22A.png
August 22, 1998
137139141143145
SE2002Jun10A.png
June 10, 2002
SE2006Mar29T.png
March 29, 2006
SE2010Jan15A.png
January 15, 2010
SE2013Nov03H.png
November 3, 2013
SE2017Aug21T.png
August 21, 2017
147149151153155
SE2021Jun10A.png
June 10, 2021
SE2025Mar29P.png
March 29, 2025
SE2029Jan14P.png
January 14, 2029
SE2032Nov03P.png
November 3, 2032
SE2036Aug21P.png
August 21, 2036

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1808Oct19P.gif
October 19, 1808
(Saros 111)
SE1819Sep19Pe.gif
September 19, 1819
(Saros 112)
SE1830Aug18P.gif
August 18, 1830
(Saros 113)
SE1841Jul18P.gif
July 18, 1841
(Saros 114)
SE1852Jun17P.gif
June 17, 1852
(Saros 115)
SE1863May17P.gif
May 17, 1863
(Saros 116)
SE1874Apr16T.png
April 16, 1874
(Saros 117)
SE1885Mar16A.gif
March 16, 1885
(Saros 118)
SE1896Feb13A.png
February 13, 1896
(Saros 119)
SE1907Jan14T.png
January 14, 1907
(Saros 120)
SE1917Dec14A.png
December 14, 1917
(Saros 121)
SE1928Nov12P.png
November 12, 1928
(Saros 122)
SE1939Oct12T.png
October 12, 1939
(Saros 123)
SE1950Sep12T.png
September 12, 1950
(Saros 124)
SE1961Aug11A.png
August 11, 1961
(Saros 125)
SE1972Jul10T.png
July 10, 1972
(Saros 126)
SE1983Jun11T.png
June 11, 1983
(Saros 127)
SE1994May10A.png
May 10, 1994
(Saros 128)
SE2005Apr08H.png
April 8, 2005
(Saros 129)
SE2016Mar09T.png
March 9, 2016
(Saros 130)
SE2027Feb06A.png
February 6, 2027
(Saros 131)
SE2038Jan05A.png
January 5, 2038
(Saros 132)
SE2048Dec05T.png
December 5, 2048
(Saros 133)
SE2059Nov05A.png
November 5, 2059
(Saros 134)
SE2070Oct04A.png
October 4, 2070
(Saros 135)
SE2081Sep03T.png
September 3, 2081
(Saros 136)
SE2092Aug03A.png
August 3, 2092
(Saros 137)
SE2103Jul04A.png
July 4, 2103
(Saros 138)
SE2114Jun03T.png
June 3, 2114
(Saros 139)
SE2125May03A.png
May 3, 2125
(Saros 140)
SE2136Apr01A.png
April 1, 2136
(Saros 141)
SE2147Mar02T.png
March 2, 2147
(Saros 142)
SE2158Jan30A.png
January 30, 2158
(Saros 143)
SE2168Dec29A.png
December 29, 2168
(Saros 144)
SE2179Nov28T.png
November 28, 2179
(Saros 145)
SE2190Oct29H.png
October 29, 2190
(Saros 146)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1809Oct09T.gif
October 9, 1809
(Saros 121)
SE1838Sep18A.gif
September 18, 1838
(Saros 122)
SE1867Aug29T.gif
August 29, 1867
(Saros 123)
SE1896Aug09T.png
August 9, 1896
(Saros 124)
SE1925Jul20A.png
July 20, 1925
(Saros 125)
SE1954Jun30T.png
June 30, 1954
(Saros 126)
SE1983Jun11T.png
June 11, 1983
(Saros 127)
SE2012May20A.png
May 20, 2012
(Saros 128)
SE2041Apr30T.png
April 30, 2041
(Saros 129)
SE2070Apr11T.png
April 11, 2070
(Saros 130)
SE2099Mar21A.png
March 21, 2099
(Saros 131)
SE2128Mar01A.png
March 1, 2128
(Saros 132)
SE2157Feb09T.png
February 9, 2157
(Saros 133)
SE2186Jan20A.png
January 20, 2186
(Saros 134)

Notes

  1. M Zaid Wahyudi. "Avoiding repeat of bitter memory of 1983 total eclipse". Kompas. Archived from the original on 7 March 2016.
  2. 中国日食观测队天文组 (1983). "1983年6月11日日全食的光学观测". 天文学进展. 1 (2): 246–247.
  3. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  4. "NASA - Catalog of Solar Eclipses of Saros 127". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of December 4, 2002</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, December 4, 2002, with a magnitude of 1.0244. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. It was visible from a narrow corridor in southern Africa, the Indian Ocean and southern Australia. A partial eclipse was seen from the much broader path of the Moon's penumbra, including most of Africa and Australia. During the sunset after the eclipse many observers in Australia saw numerous and unusual forms of a green flash.

<span class="mw-page-title-main">Solar eclipse of June 21, 2001</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, June 21, 2001, with a magnitude of 1.0495. It was the first solar eclipse of the 21st century. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring 2.2 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of February 26, 1998</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, February 26, 1998, with a magnitude of 1.0441. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in the Galápagos Islands, Panama, Colombia, the Paraguaná Peninsula in northwestern Venezuela, all of Aruba, most of Curaçao and the northwestern tip of Bonaire, all of Montserrat, Guadeloupe and Antigua and Barbuda.

<span class="mw-page-title-main">Solar eclipse of March 30, 2052</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Saturday, March 30, 2052, with a magnitude of 1.0466. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The path of totality will cross central Mexico and the southeastern states of the United States. Almost all of North America and the northern edge of South America will see a partial eclipse. It will be the 2nd total eclipse visible from the Florida Panhandle and southwest Georgia in 6.6 years. It will be the first total solar eclipse visible from Solar Saros 130 in 223 synodic months. It will be the last total solar eclipse visible in the United States until May 11, 2078.

<span class="mw-page-title-main">Solar eclipse of February 16, 1980</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Saturday, February 16, 1980, with a magnitude of 1.0434. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The path of totality crossed central Africa, southern India, and into China at sunset. The southern part of Mount Kilimanjaro, the highest mountain in Africa, also lies in the path of totality. Occurring only about 24 hours before perigee, the Moon's apparent diameter was larger. This was a Supermoon Total Solar Eclipse because the Moon was just a day before perigee.

<span class="mw-page-title-main">Solar eclipse of February 5, 1962</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Monday, February 5, 1962, with a magnitude of 1.043. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from Indonesia, Netherlands New Guinea, the Territory of Papua New Guinea, British Solomon Islands, and Palmyra Atoll.

<span class="mw-page-title-main">Solar eclipse of September 3, 2081</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, September 3, 2081, with a magnitude of 1.072. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The path of totality will begin at the Atlantic Ocean, off European mainland at 07:26:49 UTC and will end at Indonesian island of Java at 10:43:03 UTC.

<span class="mw-page-title-main">Solar eclipse of April 29, 1976</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Thursday, April 29, 1976, with a magnitude of 0.9421. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from North Africa, Greece, Turkey, Middle East, central Asia, India, China. 5 of the 14 eight-thousanders in Pakistan and China—Nanga Parbat, K2, Broad Peak, Gasherbrum II and Gasherbrum I, lie in the path of annularity.

<span class="mw-page-title-main">Solar eclipse of November 22, 1984</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, November 22, 1984, with a magnitude of 1.0237. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in Indonesia, Papua New Guinea and southern Pacific Ocean. West of the International Date Line the eclipse took place on November 23, including all land in the path of totality. Occurring only 2.1 days after perigee, the Moon's apparent diameter was fairly larger.

<span class="mw-page-title-main">Solar eclipse of March 29, 1987</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, March 29, 1987, with a magnitude of 1.0013. It was a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. The eclipse lasted a maximum of only 7.57 seconds. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Totality of this eclipse was not visible on any land, while annularity was visible in southern Argentina, Gabon, Equatorial Guinea, Cameroon, Central African Republic, Sudan, Ethiopia, Djibouti and Somaliland.

<span class="mw-page-title-main">Solar eclipse of December 26, 2038</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit between Saturday, December 25 and Sunday, December 26, 2038, with a magnitude of 1.0268. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 23, 1987</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Wednesday, September 23, 1987, with a magnitude of 0.9634. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in the Soviet Union, China, southwestern Mongolia, Okinawa Islands of Japan except Kume Island and the southwestern tip of Kerama Islands, the Federal States of Micronesia, Papua New Guinea, Solomon Islands, Rotuma Islands of Fiji, Wallis Islands and West Samoa. Occurring only 5 days after apogee, the Moon's apparent diameter was relatively small.

<span class="mw-page-title-main">Solar eclipse of June 20, 1974</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, June 20, 1974, with a magnitude of 1.0592. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the view of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 22, 1968</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Sunday, September 22, 1968, with a magnitude of 1.0099. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from the Soviet Union and Xinjiang in Northwestern China.

<span class="mw-page-title-main">Solar eclipse of August 2, 2046</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, August 2, 2046, with a magnitude of 1.0531. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is greater than the Sun's, blocking all direct sunlight. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of August 3, 2073</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Thursday, August 3, 2073, with a magnitude of 1.0294. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 27, 2093</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Tuesday, January 27, 2093, with a magnitude of 1.034. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of September 23, 2071</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, September 23, 2071, with a magnitude of 1.0333. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 2, 2095</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Thursday, June 2, 2095, with a magnitude of 1.0332. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 29, 1938</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Sunday, May 29, 1938, with a magnitude of 1.0552. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

References

Photos: