Solar eclipse of February 26, 1998

Last updated
Solar eclipse of February 26, 1998
Ecl002-2 (4321047401).jpg
Total eclipse near Guadeloupe
SE1998Feb26T.png
Map
Type of eclipse
NatureTotal
Gamma 0.2391
Magnitude 1.0441
Maximum eclipse
Duration249 s (4 min 9 s)
Coordinates 4°42′N82°42′W / 4.7°N 82.7°W / 4.7; -82.7
Max. width of band151 km (94 mi)
Times (UTC)
Greatest eclipse17:29:27
References
Saros 130 (51 of 73)
Catalog # (SE5000) 9503

A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, February 26, 1998, [1] with a magnitude of 1.0441. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.1 days before perigee (on February 27, 1998, at 19:50 UTC), the Moon's apparent diameter was larger. [2]

Contents

Totality was visible in the Galápagos Islands, Panama, Colombia, the Paraguaná Peninsula in northwestern Venezuela, all of Aruba, most of Curaçao and the northwestern tip of Bonaire (belonging to Netherlands Antilles which dissolved later), all of Montserrat, Guadeloupe and Antigua and Barbuda. A partial eclipse was visible for parts of Mexico, the southern and eastern United States, Central America, the Caribbean, northern South America, West Africa, and the Iberian Peninsula.

Observations

Jay Pasachoff led a team from Williams College, Massachusetts to Aruba and studied the rapid oscillations of the corona and coronal temperature, and also recorded coronal and other solar images in the visible and infrared parts of the spectrum. The team also photographed the corona using the same green filter onboard the Solar and Heliospheric Observatory, providing calibration for the spacecraft. [3] Fred Espenak, an astrophysicist of NASA's Goddard Space Flight Center also observed it in Aruba. Clouds gradually gathered at the beginning of the eclipse, and it rained for a while. This was the first precipitation on the island in 6 months. Later, the sky gradually cleared up and totality was successfully seen. [4] The wind speed on the island was often larger than 30 knots. [3]

A team of the Johnson Space Center observed the eclipse in Curaçao. Curaçao got the first precipitation in 4 months on the morning of the eclipse day, but it gradually cleared up afterwards. During the totality, the sky was completely clear. The corona was extending in the east-west direction, and helmet streamers could be seen at the poles of the sun. [5]

The 2001 Japanese film Orozco the Embalmer briefly featured the total eclipse as seen from Colombia.

Eclipse details

Shown below are two tables displaying details about this particular solar eclipse. The first table outlines times at which the moon's penumbra or umbra attains the specific parameter, and the second table describes various other parameters pertaining to this eclipse. [6]

February 26, 1998 Solar Eclipse Times
EventTime (UTC)
First Penumbral External Contact1998 February 26 at 14:51:26.2 UTC
First Umbral External Contact1998 February 26 at 15:47:48.6 UTC
First Central Line1998 February 26 at 15:48:32.9 UTC
First Umbral Internal Contact1998 February 26 at 15:49:17.2 UTC
First Penumbral Internal Contact1998 February 26 at 16:48:32.4 UTC
Ecliptic Conjunction1998 February 26 at 17:26:58.5 UTC
Greatest Duration1998 February 26 at 17:28:01.9 UTC
Greatest Eclipse1998 February 26 at 17:29:26.7 UTC
Equatorial Conjunction1998 February 26 at 17:36:39.9 UTC
Last Penumbral Internal Contact1998 February 26 at 18:10:10.1 UTC
Last Umbral Internal Contact1998 February 26 at 19:09:29.1 UTC
Last Central Line1998 February 26 at 19:10:14.8 UTC
Last Umbral External Contact1998 February 26 at 19:11:00.5 UTC
Last Penumbral External Contact1998 February 26 at 20:07:20.7 UTC
February 26, 1998 Solar Eclipse Parameters
ParameterValue
Eclipse Magnitude1.04411
Eclipse Obscuration1.09017
Gamma0.23909
Sun Right Ascension22h38m18.9s
Sun Declination-08°36'05.1"
Sun Semi-Diameter16'09.1"
Sun Equatorial Horizontal Parallax08.9"
Moon Right Ascension22h38m02.5s
Moon Declination-08°22'08.5"
Moon Semi-Diameter16'35.2"
Moon Equatorial Horizontal Parallax1°00'52.6"
ΔT63.0 s

Eclipse season

This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.

Eclipse season of February–March 1998
February 26
Descending node (new moon)
March 13
Ascending node (full moon)
SE1998Feb26T.png Lunar eclipse chart close-1998Mar13.png
Total solar eclipse
Solar Saros 130
Penumbral lunar eclipse
Lunar Saros 142

Eclipses in 1998

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 130

Inex

Triad

Solar eclipses of 1997–2000

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [7]

The partial solar eclipses on July 1, 2000 and December 25, 2000 occur in the next lunar year eclipse set.

Solar eclipse series sets from 1997 to 2000
Descending node Ascending node
SarosMapGammaSarosMapGamma
120
Total solar eclipse of March 9 1997.jpg
Totality in Chita, Russia
March 9, 1997
SE1997Mar09T.png
Total
0.9183125 September 2, 1997
SE1997Sep02P.png
Partial
−1.0352
130
Ecl002-2 (4321047401).jpg
Totality near Guadeloupe
February 26, 1998
SE1998Feb26T.png
Total
0.2391135 August 22, 1998
SE1998Aug22A.png
Annular
−0.2644
140 February 16, 1999
SE1999Feb16A.png
Annular
−0.4726145
Solar eclipse 1999 4.jpg
Totality in France
August 11, 1999
SE1999Aug11T.png
Total
0.5062
150 February 5, 2000
SE2000Feb05P.png
Partial
−1.2233155 July 31, 2000
SE2000Jul31P.png
Partial
1.2166

Saros 130

This eclipse is a part of Saros series 130, repeating every 18 years, 11 days, and containing 73 events. The series started with a partial solar eclipse on August 20, 1096. It contains total eclipses from April 5, 1475 through July 18, 2232. There are no annular or hybrid eclipses in this set. The series ends at member 73 as a partial eclipse on October 25, 2394. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality was produced by member 30 at 6 minutes, 41 seconds on July 11, 1619. All eclipses in this series occur at the Moon’s descending node of orbit. [8]

Series members 41–62 occur between 1801 and 2200:
414243
SE1817Nov09T.gif
November 9, 1817
SE1835Nov20T.gif
November 20, 1835
SE1853Nov30T.gif
November 30, 1853
444546
SE1871Dec12T.gif
December 12, 1871
SE1889Dec22T.png
December 22, 1889
SE1908Jan03T.png
January 3, 1908
474849
SE1926Jan14T.png
January 14, 1926
SE1944Jan25T.png
January 25, 1944
SE1962Feb05T.png
February 5, 1962
505152
SE1980Feb16T.png
February 16, 1980
SE1998Feb26T.png
February 26, 1998
SE2016Mar09T.png
March 9, 2016
535455
SE2034Mar20T.png
March 20, 2034
SE2052Mar30T.png
March 30, 2052
SE2070Apr11T.png
April 11, 2070
565758
SE2088Apr21T.png
April 21, 2088
SE2106May03T.png
May 3, 2106
SE2124May14T.png
May 14, 2124
596061
SE2142May25T.png
May 25, 2142
SE2160Jun04T.png
June 4, 2160
SE2178Jun16T.png
June 16, 2178
62
SE2196Jun26T.png
June 26, 2196

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events between July 22, 1971 and July 22, 2047
July 22May 9–11February 26–27December 14–15October 2–3
116118120122124
SE1971Jul22P.png
July 22, 1971
SE1975May11P.png
May 11, 1975
SE1979Feb26T.png
February 26, 1979
SE1982Dec15P.png
December 15, 1982
SE1986Oct03H.png
October 3, 1986
126128130132134
SE1990Jul22T.png
July 22, 1990
SE1994May10A.png
May 10, 1994
SE1998Feb26T.png
February 26, 1998
SE2001Dec14A.png
December 14, 2001
SE2005Oct03A.png
October 3, 2005
136138140142144
SE2009Jul22T.png
July 22, 2009
SE2013May10A.png
May 10, 2013
SE2017Feb26A.png
February 26, 2017
SE2020Dec14T.png
December 14, 2020
SE2024Oct02A.png
October 2, 2024
146148150152154
SE2028Jul22T.png
July 22, 2028
SE2032May09A.png
May 9, 2032
SE2036Feb27P.png
February 27, 2036
SE2039Dec15T.png
December 15, 2039
SE2043Oct03A.png
October 3, 2043
156
SE2047Jul22P.png
July 22, 2047

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1801Sep08P.png
September 8, 1801
(Saros 112)
SE1812Aug07P.gif
August 7, 1812
(Saros 113)
SE1823Jul08P.gif
July 8, 1823
(Saros 114)
SE1834Jun07P.gif
June 7, 1834
(Saros 115)
SE1845May06An.gif
May 6, 1845
(Saros 116)
SE1856Apr05T.gif
April 5, 1856
(Saros 117)
SE1867Mar06A.gif
March 6, 1867
(Saros 118)
SE1878Feb02A.gif
February 2, 1878
(Saros 119)
SE1889Jan01T.png
January 1, 1889
(Saros 120)
SE1899Dec03A.png
December 3, 1899
(Saros 121)
SE1910Nov02P.png
November 2, 1910
(Saros 122)
SE1921Oct01T.png
October 1, 1921
(Saros 123)
SE1932Aug31T.png
August 31, 1932
(Saros 124)
SE1943Aug01A.png
August 1, 1943
(Saros 125)
SE1954Jun30T.png
June 30, 1954
(Saros 126)
SE1965May30T.png
May 30, 1965
(Saros 127)
SE1976Apr29A.png
April 29, 1976
(Saros 128)
SE1987Mar29H.png
March 29, 1987
(Saros 129)
SE1998Feb26T.png
February 26, 1998
(Saros 130)
SE2009Jan26A.png
January 26, 2009
(Saros 131)
SE2019Dec26A.png
December 26, 2019
(Saros 132)
SE2030Nov25T.png
November 25, 2030
(Saros 133)
SE2041Oct25A.png
October 25, 2041
(Saros 134)
SE2052Sep22A.png
September 22, 2052
(Saros 135)
SE2063Aug24T.png
August 24, 2063
(Saros 136)
SE2074Jul24A.png
July 24, 2074
(Saros 137)
SE2085Jun22A.png
June 22, 2085
(Saros 138)
SE2096May22T.png
May 22, 2096
(Saros 139)
SE2107Apr23A.png
April 23, 2107
(Saros 140)
SE2118Mar22A.png
March 22, 2118
(Saros 141)
SE2129Feb18T.png
February 18, 2129
(Saros 142)
SE2140Jan20A.png
January 20, 2140
(Saros 143)
SE2150Dec19A.png
December 19, 2150
(Saros 144)
SE2161Nov17T.png
November 17, 2161
(Saros 145)
SE2172Oct17H.png
October 17, 2172
(Saros 146)
Saros147 32van80 SE2183Sep16A.jpg
September 16, 2183
(Saros 147)
Saros148 31van75 SE2194Aug16T.jpg
August 16, 2194
(Saros 148)

Inex series

This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.

Series members between 1801 and 2200
SE1824Jun26T.png
June 26, 1824
(Saros 124)
SE1853Jun06A.gif
June 6, 1853
(Saros 125)
SE1882May17T.png
May 17, 1882
(Saros 126)
SE1911Apr28T.png
April 28, 1911
(Saros 127)
SE1940Apr07A.png
April 7, 1940
(Saros 128)
SE1969Mar18A.png
March 18, 1969
(Saros 129)
SE1998Feb26T.png
February 26, 1998
(Saros 130)
SE2027Feb06A.png
February 6, 2027
(Saros 131)
SE2056Jan16A.png
January 16, 2056
(Saros 132)
SE2084Dec27T.png
December 27, 2084
(Saros 133)
SE2113Dec08A.png
December 8, 2113
(Saros 134)
SE2142Nov17A.png
November 17, 2142
(Saros 135)
SE2171Oct29T.png
October 29, 2171
(Saros 136)
SE2200Oct09A.png
October 9, 2200
(Saros 137)

Notes

  1. "February 26, 1998 Total Solar Eclipse". timeanddate. Retrieved 10 August 2024.
  2. "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 10 August 2024.
  3. 1 2 "Scientific Experiments at the 1998 Eclipse: The Williams College Expedition". Williams College. Archived from the original on 26 October 2016.
  4. Fred Espenak. "Report on the Total Solar Eclipse of 1998 Feb 26". Archived from the original on 16 February 2014.
  5. Paul Maley. "The Caribbean Total Solar Eclipse of 26 February 1998: A Great Success!". Eclipse Tours. Archived from the original on 22 January 2016.
  6. "Total Solar Eclipse of 1998 Feb 26". EclipseWise.com. Retrieved 10 August 2024.
  7. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  8. "NASA - Catalog of Solar Eclipses of Saros 130". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of December 4, 2002</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, December 4, 2002, with a magnitude of 1.0244. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.9 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of February 5, 1962</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Monday, February 5, 1962, with a magnitude of 1.043. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 21.5 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of April 30, 2060</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, April 30, 2060, with a magnitude of 1.066. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 11, 2078</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, May 11, 2078, with a magnitude of 1.0701. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of May 22, 2096</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit between Monday, May 21 and Tuesday, May 22, 2096, with a magnitude of 1.0737. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. This will be the first eclipse of saros series 139 to exceed series 136 in length of totality. The length of totality for saros 139 is increasing, while that of Saros 136 is decreasing.

<span class="mw-page-title-main">Solar eclipse of March 18, 1988</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit between Thursday, March 17 and Friday, March 18, 1988, with a magnitude of 1.0464. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only 1.1 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of November 22, 1984</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Thursday, November 22 and Friday, November 23, 1984, with a magnitude of 1.0237. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.1 days after perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of October 1, 1940</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, October 1, 1940, with a magnitude of 1.0645. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from Colombia, Brazil, Venezuela and South Africa.

<span class="mw-page-title-main">Solar eclipse of November 14, 2031</span> Total eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Friday, November 14, 2031, with a magnitude of 1.0106. It is a hybrid event, with portions of its central path near sunrise and sunset as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of October 12, 1977</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, October 12, 1977, with a magnitude of 1.0269. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 2.6 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of May 9, 1929</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, May 9, 1929, with a magnitude of 1.0562. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 1.7 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of January 16, 2075</span> Total eclipse

A total solar eclipse will occur at the Moon's descending node of orbit on Wednesday, January 16, 2075, with a magnitude of 1.0311. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 6, 2067</span> Hybrid eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 11, 2067</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, June 11, 2067, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 16, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, December 16, 2085, with a magnitude of 0.9971. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. If a moon with same apparent diameter in this eclipse near the Aphelion, it will be Total Solar Eclipse, but in this time of the year, just 2 weeks and 4 days before perihelion, it is an Annular Solar Eclipse.

<span class="mw-page-title-main">Solar eclipse of January 27, 2074</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, January 27, 2074, with a magnitude of 0.9798. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 22, 2085</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, June 22, 2085, with a magnitude of 0.9704. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 3, 1908</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit between Friday, January 3 and Saturday, January 4, 1908, with a magnitude of 1.0437. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 14 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of December 23, 1908</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, December 23, 1908, with a magnitude of 1.0024. It was a hybrid event, with only a fraction of its path as total, and longer sections at the start and end as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring about 3.1 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of January 25, 1944</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Tuesday, January 25, 1944, with a magnitude of 1.0428. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only about 20 hours before perigee, the Moon's apparent diameter was larger.

References

Sites and Photos

Videos