Solar eclipse of December 4, 2002

Last updated
Solar eclipse of December 4, 2002
Eclipse 4-12-2002 Woomera.jpg
The diamond ring effect at the end of totality, taken near Woomera, South Australia
SE2002Dec04T.png
Map
Type of eclipse
NatureTotal
Gamma −0.302
Magnitude 1.0244
Maximum eclipse
Duration124 s (2 min 4 s)
Coordinates 39°30′S59°36′E / 39.5°S 59.6°E / -39.5; 59.6
Max. width of band87 km (54 mi)
Times (UTC)
Greatest eclipse7:32:16
References
Saros 142 (22 of 72)
Catalog # (SE5000) 9514

A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, December 4, 2002, [1] [2] with a magnitude of 1.0244. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. It was visible from a narrow corridor in southern Africa, the Indian Ocean and southern Australia. A partial eclipse was seen from the much broader path of the Moon's penumbra, including most of Africa and Australia. During the sunset after the eclipse many observers in Australia saw numerous and unusual forms of a green flash. [3]

Contents

In some parts of Angola, it was the second total eclipse of the Sun within 18 months, following the Solar eclipse of June 21, 2001.

Observations

The Chinese Academy of Sciences sent a team to Australia, to study the gravity anomalies [4] first recorded by Indian scientists during the total solar eclipse of October 24, 1995. [5] The Chinese Academy of Sciences also studied it during previous total solar eclipses of March 9, 1997 in Mohe County and June 21, 2001 in Zambia. With continuous observation for more than 10 years after that, China obtained the first observational evidence that the gravity field propagates at the speed of light. [6]

Images

SE2002Dec04T.gif

Eclipses of 2002

Metonic

Tzolkinex

Half-Saros

Tritos

Solar Saros 142

Inex

Triad

Solar eclipses of 2000–2003

This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [7]

The partial solar eclipses on February 5, 2000 and July 31, 2000 occur in the previous lunar year eclipse set.

Solar eclipse series sets from 2000 to 2003
Ascending node Descending node
SarosMapGammaSarosMapGamma
117 July 1, 2000
SE2000Jul01P.png
Partial
−1.28214122
2000-12-25-partial solar eclipse Minnesota TLR.jpg
Partial projection in Minneapolis, MN, USA
December 25, 2000
SE2000Dec25P.png
Partial
1.13669
127
Williams College wl.jpg
Totality in Lusaka, Zambia
June 21, 2001
SE2001Jun21T.png
Total
−0.57013132
Partial solar eclipse December 14 2001 Minneapolis.jpg
Partial in Minneapolis, MN, USA
December 14, 2001
SE2001Dec14A.png
Annular
0.40885
137
Gregmote - 20020610 002 (by).jpg
Partial in Los Angeles, CA, USA
June 10, 2002
SE2002Jun10A.png
Annular
0.19933142
Eclipse 4-12-2002 Woomera.jpg
Totality in Woomera, South Australia
December 4, 2002
SE2002Dec04T.png
Total
−0.30204
147
Annular 2003-05-31 Culloden.png
Annularity in Culloden, Scotland
May 31, 2003
SE2003May31A.png
Annular
0.99598152
ECLIPSE LUNAR (3254112650).jpg
November 23, 2003
SE2003Nov23T.png
Total
−0.96381

Saros 142

This eclipse is a part of Saros series 142, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on April 17, 1624. It contains a hybrid eclipse on July 14, 1768, and total eclipses from July 25, 1786 through October 29, 2543. There are no annular eclipses in this set. The series ends at member 72 as a partial eclipse on June 5, 2904. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.

The longest duration of totality will be produced by member 38 at 6 minutes, 34 seconds on May 28, 2291. All eclipses in this series occur at the Moon’s descending node of orbit. [8]

Series members 11–32 occur between 1801 and 2200:
111213
SE1804Aug05T.png
August 5, 1804
SE1822Aug16T.png
August 16, 1822
SE1840Aug27T.png
August 27, 1840
141516
SE1858Sep07T.png
September 7, 1858
SE1876Sep17T.png
September 17, 1876
SE1894Sep29T.png
September 29, 1894
171819
SE1912Oct10T.png
October 10, 1912
SE1930Oct21T.png
October 21, 1930
SE1948Nov01T.png
November 1, 1948
202122
SE1966Nov12T.png
November 12, 1966
SE1984Nov22T.png
November 22, 1984
SE2002Dec04T.png
December 4, 2002
232425
SE2020Dec14T.png
December 14, 2020
SE2038Dec26T.png
December 26, 2038
SE2057Jan05T.png
January 5, 2057
262728
SE2075Jan16T.png
January 16, 2075
SE2093Jan27T.png
January 27, 2093
SE2111Feb08T.png
February 8, 2111
293031
SE2129Feb18T.png
February 18, 2129
SE2147Mar02T.png
March 2, 2147
SE2165Mar12T.png
March 12, 2165
32
SE2183Mar23T.png
March 23, 2183

Tritos series

This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.

Metonic series

The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.

21 eclipse events between July 11, 1953 and July 11, 2029
July 10–11April 29–30February 15–16December 4September 21–23
116118120122124
SE1953Jul11P.png
July 11, 1953
SE1957Apr30A.png
April 30, 1957
SE1961Feb15T.png
February 15, 1961
SE1964Dec04P.png
December 4, 1964
SE1968Sep22T.png
September 22, 1968
126128130132134
SE1972Jul10T.png
July 10, 1972
SE1976Apr29A.png
April 29, 1976
SE1980Feb16T.png
February 16, 1980
SE1983Dec04A.png
December 4, 1983
SE1987Sep23A.png
September 23, 1987
136138140142144
SE1991Jul11T.png
July 11, 1991
SE1995Apr29A.png
April 29, 1995
SE1999Feb16A.png
February 16, 1999
SE2002Dec04T.png
December 4, 2002
SE2006Sep22A.png
September 22, 2006
146148150152154
SE2010Jul11T.png
July 11, 2010
SE2014Apr29A.png
April 29, 2014
SE2018Feb15P.png
February 15, 2018
SE2021Dec04T.png
December 4, 2021
SE2025Sep21P.png
September 21, 2025
156
SE2029Jul11P.png
July 11, 2029

Notes

  1. "Total solar eclipse 'magnificent'". News-Press. 2002-12-05. p. 3. Retrieved 2023-10-25 via Newspapers.com.
  2. "Solar eclipse bedazzles southern Africa crowds". News and Record. 2002-12-05. p. 9. Retrieved 2023-10-25 via Newspapers.com.
  3. Maunder, Michael (2007). Lights in the Sky: Identifying and Understanding Astronomical and Meteorological Phenomena. Springer. p. 116. ISBN   978-1846287619 . Retrieved 28 September 2013.
  4. Xue Hui (5 December 2002). "今澳洲可观测到日全食 中国科学家捕捉"微重力"". Beijing Morning Post (in Chinese). Xinhua News Agency. Archived from the original on 25 December 2002.
  5. Chai Shikuan, Xiong Sihao (25 June 2001). "中科院日全食观测队获得高质量观测数据" (in Chinese). Xinhua News Agency. Archived from the original on 2003-11-03.
  6. Sun Zifa (26 December 2012). "中国科学家全球首获引力场以光速传播的观测证据" (in Chinese). China News Service. Archived from the original on 24 September 2015.
  7. van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
  8. "NASA - Catalog of Solar Eclipses of Saros 142". eclipse.gsfc.nasa.gov.

Related Research Articles

<span class="mw-page-title-main">Solar eclipse of March 29, 2006</span> Total eclipse

A total solar eclipse occurred at the Moon’s descending node of orbit on Wednesday, March 29, 2006, with a magnitude of 1.0515. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. It was visible from a narrow corridor which traversed half the Earth. This eclipse was part of Saros 139.

<span class="mw-page-title-main">Solar eclipse of November 23, 2003</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Sunday, November 23, 2003, with a magnitude of 1.0379. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. It was visible from a corridor in the Antarctic region. A partial eclipse was seen from the much broader path of the Moon's penumbra, including the southern tip of South America and most of Australia.

<span class="mw-page-title-main">Solar eclipse of June 21, 2001</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, June 21, 2001, with a magnitude of 1.0495. It was the first solar eclipse of the 21st century. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring 2.2 days before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of July 11, 1991</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, July 11, 1991, with a magnitude of 1.08. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality began over the Pacific Ocean and Hawaii moving across Mexico, down through Central America and across South America ending over Brazil. It lasted for 6 minutes and 53.08 seconds at the point of maximum eclipse. There will not be a longer total eclipse until June 13, 2132. This was the largest total solar eclipse of Solar Saros series 136.

<span class="mw-page-title-main">Solar eclipse of April 29, 2014</span> 21st-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Tuesday, April 29, 2014, with a magnitude of 0.9868. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. The center of the Moon's shadow missed the Earth's South Pole, but the partial eclipse was visible from parts of Antarctica and Australia, and an annular eclipse was visible from a small part of Antarctica.

<span class="mw-page-title-main">Solar eclipse of November 13, 2012</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit between Tuesday, November 13 and Wednesday, November 14, 2012, with a magnitude of 1.05. Because it crossed the International Date Line it began in local time on November 14 west of the date line over northern Australia, and ended in local time on November 13 east of the date line near the west coast of South America. The eclipse occurred only 12 hours before perigee, with greatest eclipse totality lasting just over four minutes. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 3, 2013</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Sunday, November 3, 2013, with a magnitude of 1.0159. It was a hybrid eclipse of the Sun with a small portion over the western Atlantic Ocean at sunrise as an annular eclipse and the rest of the path as a narrow total solar eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A hybrid solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's in sunrise and sunset, but at Greatest Eclipse the Moon's apparent diameter is larger than the Sun's.

<span class="mw-page-title-main">Solar eclipse of February 26, 1998</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, February 26, 1998, with a magnitude of 1.0441. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in the Galápagos Islands, Panama, Colombia, the Paraguaná Peninsula in northwestern Venezuela, all of Aruba, most of Curaçao and the northwestern tip of Bonaire, all of Montserrat, Guadeloupe and Antigua and Barbuda.

<span class="mw-page-title-main">Solar eclipse of February 16, 1980</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Saturday, February 16, 1980, with a magnitude of 1.0434. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The path of totality crossed central Africa, southern India, and into China at sunset. The southern part of Mount Kilimanjaro, the highest mountain in Africa, also lies in the path of totality. Occurring only about 24 hours before perigee, the Moon's apparent diameter was larger. This was a Supermoon Total Solar Eclipse because the Moon was just a day before perigee.

<span class="mw-page-title-main">Solar eclipse of April 19, 1958</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Saturday, April 19, 1958, with a magnitude of 0.9408. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in the Maldives, Nicobar Islands, Burma, Thailand including the capital city Bangkok, Cambodia, Laos, North Vietnam and South Vietnam, China, British Hong Kong, Taiwan, Ryukyu Islands and Japan. It was the fourth central solar eclipse visible from Bangkok from 1948 to 1958, where it is rare for a large city to witness 4 central solar eclipses in just 9.945 years. Places east of International Date line witnessed the eclipse on April 18 (Friday).

<span class="mw-page-title-main">Solar eclipse of June 11, 1983</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, June 11, 1983, with a magnitude of 1.0524. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only 48 hours before perigee, the Moon's apparent diameter was larger.

<span class="mw-page-title-main">Solar eclipse of October 2, 1959</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Friday, October 2, 1959, with a magnitude of 1.0325. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from northeastern Massachusetts and the southern tip of New Hampshire in the United States, Canary Islands, Morocco, Spanish Sahara including the capital city Laayoune, French Mauritania, Mali Federation, French Niger, British Nigeria, British Cameroons and French Cameroons, French Chad including the capital city Fort-Lamy, French Central Africa, Sudan, Ethiopia, and the Trust Territory of Somaliland.

<span class="mw-page-title-main">Solar eclipse of September 22, 1968</span> Total eclipse

A total solar eclipse occurred at the Moon's descending node of orbit on Sunday, September 22, 1968, with a magnitude of 1.0099. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from the Soviet Union and Xinjiang in Northwestern China.

<span class="mw-page-title-main">Solar eclipse of May 20, 1947</span> Total eclipse

A total solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, May 20, 1947, with a magnitude of 1.0557. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from Chile including the capital city Santiago, Argentina, Paraguay, Brazil, Liberia, French West Africa, British Gold Coast including capital Accra, French Togoland including capital Lomé, British Nigeria including capital Lagos, French Cameroons, French Equatorial Africa, Belgian Congo, British Uganda, British Tanganyika, and British Kenya. The southern part of Aconcagua, the highest mountain outside Asia, and Iguazu Falls, one of the largest waterfalls systems in the world, lie in the path of totality.

<span class="mw-page-title-main">Solar eclipse of July 12, 2056</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, July 12, 2056, with a magnitude of 0.9878. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of January 16, 2056</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Sunday, January 16, 2056, with a magnitude of 0.9759. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of December 6, 2067</span> Hybrid eclipse

A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, December 6, 2067, with a magnitude of 1.0011. It is a hybrid event, beginning and ending as an annular eclipse. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of June 11, 2067</span> Future annular solar eclipse

An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, June 11, 2067, with a magnitude of 0.967. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.

<span class="mw-page-title-main">Solar eclipse of November 12, 1947</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's descending node of orbit on Wednesday, November 12, 1947, with a magnitude of 0.965. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from the Pacific Ocean, Peru, Ecuador, Colombia and Brazil.

<span class="mw-page-title-main">Solar eclipse of July 9, 1926</span> 20th-century annular solar eclipse

An annular solar eclipse occurred at the Moon's ascending node of orbit on Friday, July 9, 1926, with a magnitude of 0.968. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from the islands of Pulo Anna and Merir in Japan's South Seas Mandate and Wake Island on July 10 (Saturday), and Midway Atoll on July 9 (Friday).

References

Photos: