A swell, also sometimes referred to as ground swell, in the context of an ocean, sea or lake, is a series of mechanical waves that propagate along the interface between water and air under the predominating influence of gravity, and thus are often referred to as surface gravity waves. These surface gravity waves have their origin as wind waves, but are the consequence of dispersion of wind waves from distant weather systems, where wind blows for a duration of time over a fetch of water, and these waves move out from the source area at speeds that are a function of wave period and length. More generally, a swell consists of wind-generated waves that are not greatly affected by the local wind at that time. Swell waves often have a relatively long wavelength, as short wavelength waves carry less energy and dissipate faster, but this varies due to the size, strength, and duration of the weather system responsible for the swell and the size of the water body, and varies from event to event, and from the same event, over time. Occasionally, swells that are longer than 700m occur as a result of the most severe storms.
Swell direction is the direction from which the swell is moving. It is given as a geographical direction, either in degrees, or in points of the compass, such as NNW or SW swell, and like winds, the direction given is generally the direction the swell is coming from. Swells have a narrower range of frequencies and directions than locally generated wind waves, because they have dispersed from their generation area and over time tend to sort by speed of propagation with the faster waves passing a distant point first. Swells take on a more defined shape and direction and are less random than locally generated wind waves.
Large breakers observed on a shore may result from distant weather systems over the ocean. Five factors work together to determine the size of wind waves [1] which will become ocean swell:
A wave is described using the following dimensions:
Wave length is a function of period, and of water depth for depths less than approximately half the wave length, where the wave motion is affected by friction with the bottom.
A fully developed sea has the maximum wave size theoretically possible for a wind of a specific strength and fetch. Further exposure to that specific wind would result in a loss of energy equal to the energy input giving a steady state, due to the energy dissipation from viscosity and breaking of wave tops as "whitecaps".
Waves in a given area typically have a range of heights. For weather reporting and for scientific analysis of wind wave statistics, their characteristic height over a time interval is usually expressed as significant wave height . This figure represents an average height of the highest one-third of the waves in a given time period (usually chosen somewhere in the range from 20 minutes to twelve hours), or in a specific wave or storm system. The significant wave height is also the value a "trained observer" (e.g. from a ship's crew) would estimate from visual observation of a sea state. Given the variability of wave height, the largest individual waves are likely to be somewhat less than twice the significant wave height. [2]
Wind waves are generated by wind. Other kinds of disturbances such as seismic events, can also cause gravity waves, but they are not wind waves, and do not generally result in swell. The generation of wind waves is initiated by the disturbances of the crosswind field on the surface of the water.
For initial conditions of a flat water surface (Beaufort Scale 0) and abrupt crosswind flows on the surface of the water, the generation of surface wind waves can be explained by two mechanisms, which are initiated by normal pressure fluctuations of turbulent winds and parallel wind shear flows.
From "wind fluctuations": Wind wave formation is started by a random distribution of normal pressure acting on the water from the wind. By this mechanism, proposed by O.M. Phillips in 1957, the water surface is initially at rest, and the generation of the wave is initiated by turbulent wind flows and then by fluctuations of the wind, normal pressure acting on the water surface. Due to this pressure fluctuation arise normal and tangential stresses that generate wave behavior on the water surface.
The assumptions of this mechanism are as follows:
From "wind shear forces": In 1957, John W. Miles suggested a surface wave generation mechanism that is initiated by turbulent wind shear flows, , based on the inviscid Orr-Sommerfeld equation. He found that the energy transfer from wind to water surface as a wave speed, , is proportional to the curvature of the velocity profile of wind, , at the point where the mean wind speed is equal to the wave speed (, where is the mean turbulent wind speed). Since the wind profile, , is logarithmic to the water surface, the curvature, , has a negative sign at point . This relation shows the wind flow transferring its kinetic energy to the water surface at their interface, and thence arises wave speed, . The growth-rate can be determined by the curvature of the winds () at the steering height () for a given wind speed, .
The assumptions of this mechanism are:
Generally, these wave formation mechanisms occur together on the ocean surface, giving rise to wind waves that eventually grow into fully developed waves. [5] If one supposes a very flat sea surface (Beaufort number, 0), and sudden wind flow blows steadily across it, the physical wave generation process would be like this:
Conditions necessary for a fully developed sea at given wind speeds, and the parameters of the resulting waves[ citation needed ] | |||||
---|---|---|---|---|---|
Wind conditions | Wave size | ||||
Wind speed in one direction | Fetch | Wind duration | Average height | Average wavelength | Average period and speed |
19 km/h (12 mph; 10 kn) | 19 km (12 mi) | 2 h | 0.27 m (0.89 ft) | 8.5 m (28 ft) | 3.0 s, 2.8 m/s (9.3 ft/s) |
37 km/h (23 mph; 20 kn) | 139 km (86 mi) | 10 h | 1.5 m (4.9 ft) | 33.8 m (111 ft) | 5.7 s, 5.9 m/s (19.5 ft/s) |
56 km/h (35 mph; 30 kn) | 518 km (322 mi) | 23 h | 4.1 m (13 ft) | 76.5 m (251 ft) | 8.6 s, 8.9 m/s (29.2 ft/s) |
74 km/h (46 mph; 40 kn) | 1,313 km (816 mi) | 42 h | 8.5 m (28 ft) | 136 m (446 ft) | 11.4 s, 11.9 m/s (39.1 ft/s) |
92 km/h (57 mph; 50 kn) | 2,627 km (1,632 mi) | 69 h | 14.8 m (49 ft) | 212.2 m (696 ft) | 14.3 s, 14.8 m/s (48.7 ft/s) |
Long swell waves develop from and take energy from the shorter wind waves. The process was first described by Klaus Hasselmann (2021 Nobel prize winner) after investigating the non-linear effects that are most pronounced near the peaks of the highest waves. He showed that, through these non-linearities, two wave trains in deep water can interact to generate two new sets of waves, one generally of longer and the other of shorter wavelength.
The equation that Hasselmann [8] developed to describe this process is now used in the sea state models (for example Wavewatch III [9] ) used by all the major weather and climate forecasting centres. This is because both the wind sea and the swell have significant effects on the transfer of heat from the ocean to atmosphere. This affects both large scale climate systems, like the El Niño, and smaller scale systems, such as the atmospheric depressions that develop near the edges of the Gulf Stream.
A good physical description of the Hasselmann process is hard to explain, but the non-linear effects are largest near the peaks of the highest waves and the short waves, which often break near the same position, can be used as an analogy. This is because each small breaking wave gives a small push to the longer wave on which it is breaking. From the point of view of the long wave, it is receiving a small push on each of its crests just like a swing being given a small push at just the right time. There is also no comparable effect in the wave's trough - a term which would tend to reduce the size of the long wave.
From the point of view of a physicist this effect is of extra interest because it shows how, what starts as a random wave field, can generate the order of a long train of swell waves at the cost of the energy losses and increased disorder affecting all the small breaking waves. The sorting of sand grain sizes, often seen on a beach, [10] [11] is a similar process (as is a lot of life).
The dissipation of swell energy is much stronger for short waves,[ citation needed ][ clarification needed ] which is why swells from distant storms are only long waves. The dissipation of waves with periods larger than 13 seconds is very weak but still significant at the scale of the Pacific Ocean. [12] These long swells lose half of their energy over a distance that varies from over 20,000 km (half the distance round the globe) to just over 2,000 km. This variation was found to be a systematic function of the swell steepness: the ratio of the swell height to the wavelength. The reason for this behavior is still unclear, but it is possible that this dissipation is due to the friction at the air-sea interface.
Swells are often created by storms thousands of nautical miles away from the shores where they break, and the propagation of the longest swells is primarily limited by shorelines. For example, swells generated in the Indian Ocean have been recorded in California after more than half a round-the-world trip. [13] This distance allows the waves comprising the swells to be better sorted and free of chop as they travel toward the coast. Waves generated by storm winds have the same speed and will group together and travel with each other,[ citation needed ] while others moving at even a fraction of a meter per second slower will lag behind, ultimately arriving many hours later due to the distance covered. The time of propagation from the source t is proportional to the distance X divided by the wave period T. In deep water it is where g is the acceleration of gravity. For a storm located 10,000 km away, swells with a period T=15 s will arrive 10 days after the storm, followed by 14 s swells another 17 hours later, and so forth.
The dispersed arrival of swells, starting with the longest period, with a reduction in the peak wave period over time, can be used to calculate the distance at which swells were generated.
Whereas the sea state in the storm has a frequency spectrum with more or less the same shape (i.e. a well defined peak with dominant frequencies within plus or minus 7% of the peak), the swell spectra are more and more narrow, sometimes as 2% or less, as waves disperse further and further away. The result is that wave groups (called sets by surfers) can have a large number of waves. From about seven waves per group in the storm, this rises to 20 and more in swells from very distant storms.[ citation needed ]
Just like for all water waves, the energy flux is proportional to the significant wave height squared times the group velocity. In deep water, this group velocity is proportional to the wave period. Hence swells with longer periods can transfer more energy than shorter wind waves. Also, the amplitude of infragravity waves increases dramatically with the wave period (approximately the square of the period), which results in higher run-up.
As swell waves typically have long wavelengths (and thus a deeper wave base), they begin the refraction process (see water waves) at greater distances offshore (in deeper water) than locally generated waves. [14]
Since swell-generated waves are mixed with normal sea waves, they can be difficult to detect with the naked eye (particularly away from the shore) if they are not significantly larger than the normal waves. From a signal analysis point of view, swells can be thought of as a fairly regular (though not continual) wave signal existing in the midst of strong noise (i.e., normal waves and chop).
Swells were used by Micronesian navigators to maintain course when no other clues were available, such as on foggy nights. [15]
A tsunami is a series of waves in a water body caused by the displacement of a large volume of water, generally in an ocean or a large lake. Earthquakes, volcanic eruptions and other underwater explosions above or below water all have the potential to generate a tsunami. Unlike normal ocean waves, which are generated by wind, or tides, which are in turn generated by the gravitational pull of the Moon and the Sun, a tsunami is generated by the displacement of water from a large event.
In fluid dynamics, gravity waves are waves generated in a fluid medium or at the interface between two media when the force of gravity or buoyancy tries to restore equilibrium. An example of such an interface is that between the atmosphere and the ocean, which gives rise to wind waves.
The surface layer is the layer of a turbulent fluid most affected by interaction with a solid surface or the surface separating a gas and a liquid where the characteristics of the turbulence depend on distance from the interface. Surface layers are characterized by large normal gradients of tangential velocity and large concentration gradients of any substances transported to or from the interface.
A capillary wave is a wave traveling along the phase boundary of a fluid, whose dynamics and phase velocity are dominated by the effects of surface tension.
In fluid dynamics, a wind wave, or wind-generated water wave, is a surface wave that occurs on the free surface of bodies of water as a result of the wind blowing over the water's surface. The contact distance in the direction of the wind is known as the fetch. Waves in the oceans can travel thousands of kilometers before reaching land. Wind waves on Earth range in size from small ripples to waves over 30 m (100 ft) high, being limited by wind speed, duration, fetch, and water depth.
Wave power is the capture of energy of wind waves to do useful work – for example, electricity generation, water desalination, or pumping water. A machine that exploits wave power is a wave energy converter (WEC).
Internal waves are gravity waves that oscillate within a fluid medium, rather than on its surface. To exist, the fluid must be stratified: the density must change with depth/height due to changes, for example, in temperature and/or salinity. If the density changes over a small vertical distance, the waves propagate horizontally like surface waves, but do so at slower speeds as determined by the density difference of the fluid below and above the interface. If the density changes continuously, the waves can propagate vertically as well as horizontally through the fluid.
In acoustics, microbaroms, also known as the "voice of the sea", are a class of atmospheric infrasonic waves generated in marine storms by a non-linear interaction of ocean surface waves with the atmosphere. They typically have narrow-band, nearly sinusoidal waveforms with amplitudes up to a few microbars, and wave periods near 5 seconds. Due to low atmospheric absorption at these low frequencies, microbaroms can propagate thousands of kilometers in the atmosphere, and can be readily detected by widely separated instruments on the Earth's surface.
In physical oceanography and fluid dynamics, the wind stress is the shear stress exerted by the wind on the surface of large bodies of water – such as oceans, seas, estuaries and lakes. Stress is the quantity that describes the magnitude of a force that is causing a deformation of an object. Therefore, stress is defined as the force per unit area and its SI unit is the Pascal. When the deforming force acts parallel to the object's surface, this force is called a shear force and the stress it causes is called a shear stress. When wind is blowing over a water surface, the wind applies a wind force on the water surface. The wind stress is the component of this wind force that is parallel to the surface per unit area. Also, the wind stress can be described as the flux of horizontal momentum applied by the wind on the water surface. The wind stress causes a deformation of the water body whereby wind waves are generated. Also, the wind stress drives ocean currents and is therefore an important driver of the large-scale ocean circulation. The wind stress is affected by the wind speed, the shape of the wind waves and the atmospheric stratification. It is one of the components of the air–sea interaction, with others being the atmospheric pressure on the water surface, as well as the exchange of energy and mass between the water and the atmosphere.
In fluid dynamics, wave shoaling is the effect by which surface waves, entering shallower water, change in wave height. It is caused by the fact that the group velocity, which is also the wave-energy transport velocity, changes with water depth. Under stationary conditions, a decrease in transport speed must be compensated by an increase in energy density in order to maintain a constant energy flux. Shoaling waves will also exhibit a reduction in wavelength while the frequency remains constant.
In seismology, a microseism is defined as a faint earth tremor caused by natural phenomena. Sometimes referred to as a "hum", it should not be confused with the anomalous acoustic phenomenon of the same name. The term is most commonly used to refer to the dominant background seismic and electromagnetic noise signals on Earth, which are caused by water waves in the oceans and lakes. Characteristics of microseism are discussed by Bhatt. Because the ocean wave oscillations are statistically homogenous over several hours, the microseism signal is a long-continuing oscillation of the ground. The most energetic seismic waves that make up the microseismic field are Rayleigh waves, but Love waves can make up a significant fraction of the wave field, and body waves are also easily detected with arrays. Because the conversion from the ocean waves to the seismic waves is very weak, the amplitude of ground motions associated to microseisms does not generally exceed 10 micrometers.
In fluid dynamics, Airy wave theory gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.
In fluid dynamics, wind wave modeling describes the effort to depict the sea state and predict the evolution of the energy of wind waves using numerical techniques. These simulations consider atmospheric wind forcing, nonlinear wave interactions, and frictional dissipation, and they output statistics describing wave heights, periods, and propagation directions for regional seas or global oceans. Such wave hindcasts and wave forecasts are extremely important for commercial interests on the high seas. For example, the shipping industry requires guidance for operational planning and tactical seakeeping purposes.
In fluid dynamics, the Coriolis–Stokes force is a forcing of the mean flow in a rotating fluid due to interaction of the Coriolis effect and wave-induced Stokes drift. This force acts on water independently of the wind stress.
Internal tides are generated as the surface tides move stratified water up and down sloping topography, which produces a wave in the ocean interior. So internal tides are internal waves at a tidal frequency. The other major source of internal waves is the wind which produces internal waves near the inertial frequency. When a small water parcel is displaced from its equilibrium position, it will return either downwards due to gravity or upwards due to buoyancy. The water parcel will overshoot its original equilibrium position and this disturbance will set off an internal gravity wave. Munk (1981) notes, "Gravity waves in the ocean's interior are as common as waves at the sea surface-perhaps even more so, for no one has ever reported an interior calm."
Infragravity waves are surface gravity waves with frequencies lower than the wind waves – consisting of both wind sea and swell – thus corresponding with the part of the wave spectrum lower than the frequencies directly generated by forcing through the wind.
Marine weather forecasting is the process by which mariners and meteorological organizations attempt to forecast future weather conditions over the Earth's oceans. Mariners have had rules of thumb regarding the navigation around tropical cyclones for many years, dividing a storm into halves and sailing through the normally weaker and more navigable half of their circulation. Marine weather forecasts by various weather organizations can be traced back to the sinking of the Royal Charter in 1859 and the RMS Titanic in 1912.
Wind-wave dissipation or "swell dissipation" is process in which a wave generated via a weather system loses its mechanical energy transferred from the atmosphere via wind. Wind waves, as their name suggests, are generated by wind transferring energy from the atmosphere to the ocean's surface, capillary gravity waves play an essential role in this effect, "wind waves" or "swell" are also known as surface gravity waves.
In continuum mechanics, an energy cascade involves the transfer of energy from large scales of motion to the small scales or a transfer of energy from the small scales to the large scales. This transfer of energy between different scales requires that the dynamics of the system is nonlinear. Strictly speaking, a cascade requires the energy transfer to be local in scale, evoking a cascading waterfall from pool to pool without long-range transfers across the scale domain.
In physical oceanography and fluid mechanics, the Miles-Phillips mechanism describes the generation of wind waves from a flat sea surface by two distinct mechanisms. Wind blowing over the surface generates tiny wavelets. These wavelets develop over time and become ocean surface waves by absorbing the energy transferred from the wind. The Miles-Phillips mechanism is a physical interpretation of these wind-generated surface waves.
Both mechanisms are applied to gravity-capillary waves and have in common that waves are generated by a resonance phenomenon. The Miles mechanism is based on the hypothesis that waves arise as an instability of the sea-atmosphere system. The Phillips mechanism assumes that turbulent eddies in the atmospheric boundary layer induce pressure fluctuations at the sea surface. The Phillips mechanism is generally assumed to be important in the first stages of wave growth, whereas the Miles mechanism is important in later stages where the wave growth becomes exponential in time.