Solar eclipse of March 20, 2034 | |
---|---|
Type of eclipse | |
Nature | Total |
Gamma | 0.2894 |
Magnitude | 1.0458 |
Maximum eclipse | |
Duration | 249 s (4 min 9 s) |
Coordinates | 16°06′N22°12′E / 16.1°N 22.2°E |
Max. width of band | 159 km (99 mi) |
Times (UTC) | |
Greatest eclipse | 10:18:45 |
References | |
Saros | 130 (53 of 73) |
Catalog # (SE5000) | 9583 |
A total solar eclipse will occur at the Moon's descending node of orbit on Monday, March 20, 2034, with a magnitude of 1.0458. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality will be visible in 13 countries: from east to west, Benin, Nigeria, Cameroon, Chad, Sudan, Egypt, Saudi Arabia, Kuwait, Iran, Afghanistan, Pakistan, India, and China. [1] The eclipse passes through Iran only a few hours before the vernal Spring equinox, marking the beginning of the Persian New Year.
Country or Territory | Place or City | Start of | Start of total eclipse (Local Time) | End of total eclipse (Local Time) | Duration of total eclipse | End of partial eclipse (Local Time) | Magnitude |
---|---|---|---|---|---|---|---|
Benin | Akraké | 09:01:11 | 10:17:36 | 10:18:57 | 1 min 51 s | 11:45:51 | 1,042 |
Nigeria | Lagos | 09:02:04 | 10:18:23 | 10:21:02 | 2 min 39 s | 11:47:45 | 1,042 |
Nigeria | Ikorodu | 09:02:23 | 10:19:01 | 10:21:15 | 2 min 15s | 11:48:17 | 1,042 |
Nigeria | Ondo Town | 09:04:23 | 10:22:02 | 10:24:44 | 2 min 43 s | 11:52:25 | 1,043 |
Nigeria | Benin City | 09:04:36 | 10:22:44 | 10:24:58 | 2 min 14 s | 11:53:15 | 1,043 |
Nigeria | Akure | 09:05:11 | 10:22:57 | 10:25:42 | 2 min 44 s | 11:53:35 | 1,043 |
Nigeria | Makurdi | 09:10:12 | 10:30:39 | 10:33:05 | 2 min 26 s | 12:02:58 | 1,044 |
Nigeria | Lafia | 09:11:12 | 10:31:12 | 10:34:49 | 3 min 37 s | 12:04:10 | 1,044 |
Nigeria | Gombe | 09:17:38 | 10:40:19 | 10:42:52 | 2 min 33 s | 12:13:51 | 1,044 |
Nigeria | Mubi | 09:20:58 | 10:44:51 | 10:47:53 | 3 min 02 s | 12:19:57 | 1,045 |
Cameroon | Mokolo | 09:22:25 | 10:46:36 | 10:50:11 | 3 min 35 s | 12:21:26 | 1,045 |
Cameroon | Maroua | 09:23:16 | 10:48:38 | 10:50:07 | 1 min 29 s | 12:22:31 | 1,045 |
Chad | N'Djamena | 09:26:50 | 10:51:41 | 10:55:27 | 3 min 45 s | 12:26:43 | 1,045 |
Chad | Biltine | 09:41:55 | 11:10:53 | 11:12:50 | 1 min 57 s | 12:44:43 | 1,046 |
Sudan | Abri | 11:12:58 | 12:42:02 | 12:46:03 | 4 min 01 s | 14:11:53 | 1,045 |
Sudan | Wadi Halfa | 11:16:55 | 12:46:00 | 12:49:19 | 3 min 20 s | 14:14:35 | 1,045 |
Egypt | Shalateen | 11:28:41 | 12:56:52 | 13:00:11 | 3 min 19 s | 14:22:45 | 1,044 |
Saudi Arabia | Yanbu | 12:35:54 | 14:03:35 | 14:05:58 | 2 min 23 s | 15:27:11 | 1,044 |
Saudi Arabia | Hafar Al Batin | 12:58:28 | 14:21:18 | 14:23:31 | 2 min 12 s | 15:38:34 | 1,042i |
Kuwait | Wafra | 13:03:10 | 14:24:25 | 14:27:37 | 3 min 12 s | 15:40:52 | 1,041 |
Kuwait | Mangaf | 13:03:38 | 14:25:09 | 14:27:18 | 2 min 09 s | 15:40:53 | 1,041 |
Saudi Arabia | Khafji | 13:03:53 | 14:25:10 | 14:28:03 | 2 min 52 s | 15:41:16 | 1,041 |
Iran | Bushehr | 13:39:05 | 14:59:16 | 15:01:29 | 2 min 13 s | 16:13:30 | 1,041 |
Iran | Shiraz | 13:42:53 | 15:01:44 | 15:34:15 | 2 min 30 s | 16:14:58 | 1,040 |
Iran | Rafsanjan | 13:49:44 | 15:06:37 | 15:08:37 | 2 min 00 s | 16:17:28 | 1,039 |
Afghanistan | Farah | 15:00:27 | 16:13:04 | 16:15:29 | 2 min 35 s | 17:20:32 | 1,037 |
Afghanistan | Ghazni | 15:09:19 | 16:18:26 | 16:20:19 | 1 min 53 s | 17:22:28 | 1,035 |
Afghanistan | Jost | 15:11:13 | 16:19:24 | 16:21:38 | 2 m 14 s | 17:22:57 | 1,035 |
Pakistan | Peshawar | 15:43:00 | 16:50:31 | 16:52:08 | 1 min 38 s | 17:52:59 | 1,035 |
Pakistan | Mardan | 15:43:32 | 16:51:10 | 16:51:57 | 47 s | 17:52:59 | 1,034 |
Pakistan | Wah | 15:44:23 | 16:51:03 | 16:53:13 | 2 min 10 s | 17:53:18 | 1,034 |
Pakistan | Islamabad | 15:44:44 | 16:51:17 | 16:53:24 | 2 min 07 s | 17:53:23 | 1,034 |
Pakistan | Rawalpindi | 15:44:45 | 16:51:24 | 16:53:22 | 1 min 58 s | 17:53:26 | 1,034 |
Pakistan | Abbottabad | 15:44:50 | 16:51:27 | 16:53:03 | 1 min 36 s | 17:53:11 | 1,034 |
India | Srinagar, Jammu and Kashmir Region | 16:16:29 | 17:22:07 | 17:24:10 | 2 min 03 s | 18:23:25 | 1,034 |
India | Leh, Ladakh Region | 16:19:08 | 17:23:25 | 17:25:24 | 1 min 59 s | 18:53:34 | 1,033 |
China | Rutog County, Tibet Autonomous Region | 18:51:23 | 19:54:22 | 19:56:11 | 1 min 39 s | 20:45:47 (sunset) | 1,032 |
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [2]
The partial solar eclipse on July 23, 2036 occurs in the next lunar year eclipse set.
Solar eclipse series sets from 2033 to 2036 | ||||||
---|---|---|---|---|---|---|
Descending node | Ascending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
120 | March 30, 2033 Total | 0.9778 | 125 | September 23, 2033 Partial | −1.1583 | |
130 | March 20, 2034 Total | 0.2894 | 135 | September 12, 2034 Annular | −0.3936 | |
140 | March 9, 2035 Annular | −0.4368 | 145 | September 2, 2035 Total | 0.3727 | |
150 | February 27, 2036 Partial | −1.1942 | 155 | August 21, 2036 Partial | 1.0825 |
This eclipse is a part of Saros series 130, repeating every 18 years, 11 days, and containing 73 events. The series started with a partial solar eclipse on August 20, 1096. It contains total eclipses from April 5, 1475 through July 18, 2232. There are no annular or hybrid eclipses in this set. The series ends at member 73 as a partial eclipse on October 25, 2394. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 30 at 6 minutes, 41 seconds on July 11, 1619. All eclipses in this series occur at the Moon’s descending node of orbit. [3]
Series members 41–62 occur between 1801 and 2200: | ||
---|---|---|
41 | 42 | 43 |
November 9, 1817 | November 20, 1835 | November 30, 1853 |
44 | 45 | 46 |
December 12, 1871 | December 22, 1889 | January 3, 1908 |
47 | 48 | 49 |
January 14, 1926 | January 25, 1944 | February 5, 1962 |
50 | 51 | 52 |
February 16, 1980 | February 26, 1998 | March 9, 2016 |
53 | 54 | 55 |
March 20, 2034 | March 30, 2052 | April 11, 2070 |
56 | 57 | 58 |
April 21, 2088 | May 3, 2106 | May 14, 2124 |
59 | 60 | 61 |
May 25, 2142 | June 4, 2160 | June 16, 2178 |
62 | ||
June 26, 2196 |
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's descending node.
22 eclipse events between June 1, 2011 and October 24, 2098 | ||||
---|---|---|---|---|
May 31–June 1 | March 19–20 | January 5–6 | October 24–25 | August 12–13 |
118 | 120 | 122 | 124 | 126 |
June 1, 2011 | March 20, 2015 | January 6, 2019 | October 25, 2022 | August 12, 2026 |
128 | 130 | 132 | 134 | 136 |
June 1, 2030 | March 20, 2034 | January 5, 2038 | October 25, 2041 | August 12, 2045 |
138 | 140 | 142 | 144 | 146 |
May 31, 2049 | March 20, 2053 | January 5, 2057 | October 24, 2060 | August 12, 2064 |
148 | 150 | 152 | 154 | 156 |
May 31, 2068 | March 19, 2072 | January 6, 2076 | October 24, 2079 | August 13, 2083 |
158 | 160 | 162 | 164 | |
June 1, 2087 | October 24, 2098 |
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
January 1, 1805 (Saros 109) | October 31, 1826 (Saros 111) | August 28, 1848 (Saros 113) | ||
July 29, 1859 (Saros 114) | June 28, 1870 (Saros 115) | May 27, 1881 (Saros 116) | April 26, 1892 (Saros 117) | March 29, 1903 (Saros 118) |
February 25, 1914 (Saros 119) | January 24, 1925 (Saros 120) | December 25, 1935 (Saros 121) | November 23, 1946 (Saros 122) | October 23, 1957 (Saros 123) |
September 22, 1968 (Saros 124) | August 22, 1979 (Saros 125) | July 22, 1990 (Saros 126) | June 21, 2001 (Saros 127) | May 20, 2012 (Saros 128) |
April 20, 2023 (Saros 129) | March 20, 2034 (Saros 130) | February 16, 2045 (Saros 131) | January 16, 2056 (Saros 132) | December 17, 2066 (Saros 133) |
November 15, 2077 (Saros 134) | October 14, 2088 (Saros 135) | September 14, 2099 (Saros 136) | August 15, 2110 (Saros 137) | July 14, 2121 (Saros 138) |
June 13, 2132 (Saros 139) | May 14, 2143 (Saros 140) | April 12, 2154 (Saros 141) | March 12, 2165 (Saros 142) | February 10, 2176 (Saros 143) |
January 9, 2187 (Saros 144) | December 9, 2197 (Saros 145) |
This eclipse is a part of the long period inex cycle, repeating at alternating nodes, every 358 synodic months (≈ 10,571.95 days, or 29 years minus 20 days). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee). However, groupings of 3 inex cycles (≈ 87 years minus 2 months) comes close (≈ 1,151.02 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||
---|---|---|
August 28, 1802 (Saros 122) | August 7, 1831 (Saros 123) | July 18, 1860 (Saros 124) |
June 28, 1889 (Saros 125) | June 8, 1918 (Saros 126) | May 20, 1947 (Saros 127) |
April 29, 1976 (Saros 128) | April 8, 2005 (Saros 129) | March 20, 2034 (Saros 130) |
February 28, 2063 (Saros 131) | February 7, 2092 (Saros 132) | January 19, 2121 (Saros 133) |
December 30, 2149 (Saros 134) | December 9, 2178 (Saros 135) |
A total solar eclipse will occur at the Moon's descending node of orbit on Saturday, March 30, 2052, with a magnitude of 1.0466. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The path of totality will cross central Mexico and the southeastern states of the United States. Almost all of North America and the northern edge of South America will see a partial eclipse. It will be the 2nd total eclipse visible from the Florida Panhandle and southwest Georgia in 6.6 years. It will be the first total solar eclipse visible from Solar Saros 130 in 223 synodic months. It will be the last total solar eclipse visible in the United States until May 11, 2078.
An annular solar eclipse will occur at the Moon's descending node of orbit on Tuesday, January 5, 2038, with a magnitude of 0.9728. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
A total solar eclipse will occur at the Moon's descending node of orbit on Friday, August 24, 2063, with a magnitude of 1.075. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, June 1, 2030, with a magnitude of 0.9443. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
A total solar eclipse will occur at the Moon's ascending node of orbit on Monday, November 25, 2030, with a magnitude of 1.0468. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality will be visible in Namibia, Botswana, South Africa, Lesotho, and Australia.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Saturday, February 6, 2027, with a magnitude of 0.9281. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
A partial solar eclipse will occur at the Moon’s ascending node of orbit on Saturday, March 29, 2025, with a magnitude of 0.9376. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A partial solar eclipse occurs in the polar regions of the Earth when the center of the Moon's shadow misses the Earth.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, September 12, 2034, with a magnitude of 0.9736. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Friday, July 2, 2038, with a magnitude of 0.9911. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
A total solar eclipse will occur at the Moon's ascending node of orbit on Tuesday, April 30, 2041, with a magnitude of 1.0189. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
A total solar eclipse will occur at the Moon's ascending node of orbit on Thursday, April 9, 2043, with a magnitude of 1.0095. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's descending node of orbit on Friday, October 25, 2041, with a magnitude of 0.9467. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's descending node of orbit on Saturday, October 3, 2043, with a magnitude of 0.9497. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Thursday, February 16, 2045, with a magnitude of 0.9285. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
A total solar eclipse occurred at the Moon's descending node of orbit on Tuesday, October 21, 1930, with a magnitude of 1.023. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from Niuafoʻou in Tonga, Chile, and a tiny part of Santa Cruz Province, Argentina.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Sunday, September 22, 2052, with a magnitude of 0.9734. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
An annular solar eclipse will occur at the Moon's ascending node of orbit on Wednesday, February 28, 2063, with a magnitude of 0.9293. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide.
A total solar eclipse will occur at the Moon's descending node of orbit on Thursday, May 31, 2068, with a magnitude of 1.011. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
A total solar eclipse will occur at the Moon's descending node of orbit between Thursday, April 10 and Friday, April 11, 2070, with a magnitude of 1.0472. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide.
An annular solar eclipse occurred at the Moon's descending node of orbit on Wednesday, November 12, 1947, with a magnitude of 0.965. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from the Pacific Ocean, Peru, Ecuador, Colombia and Brazil.