Nav1.8

Last updated
SCN10A
Identifiers
Aliases SCN10A , FEPS2, Nav1.8, PN3, SNS, hPN3, sodium voltage-gated channel alpha subunit 10
External IDs OMIM: 604427 MGI: 108029 HomoloGene: 21300 GeneCards: SCN10A
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001293306
NM_001293307
NM_006514

NM_001205321
NM_009134

RefSeq (protein)

NP_001280235
NP_001280236
NP_006505

NP_001192250
NP_033160

Location (UCSC) Chr 3: 38.7 – 38.82 Mb Chr 9: 119.44 – 119.55 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Nav1.8 is a sodium ion channel subtype that in humans is encoded by the SCN10A gene. [5] [6] [7] [8]

Contents

Nav1.8-containing channels are tetrodotoxin (TTX)-resistant voltage-gated channels. Nav1.8 is expressed specifically in the dorsal root ganglion (DRG), in unmyelinated, small-diameter sensory neurons called C-fibres, and is involved in nociception. [9] [10] C-fibres can be activated by noxious thermal or mechanical stimuli and thus can carry pain messages.

The specific location of Nav1.8 in sensory neurons of the DRG may make it a key therapeutic target for the development of new analgesics [11] and the treatment of chronic pain. [12]

Function

Voltage-gated sodium ion channels (VGSC) are essential in producing and propagating action potentials. Tetrodotoxin, a toxin found in pufferfish, is able to block some VGSCs and therefore is used to distinguish the different subtypes. There are three TTX-resistant VGSC: Nav1.5, Nav1.8 and Nav1.9. Nav1.8 and Nav1.9 are both expressed in nociceptors (damage-sensing neurons). Nav1.7, Nav1.8 and Nav1.9 are found in the DRG and help mediate chronic inflammatory pain. [13] Nav1.8 is an α-type channel subunit consisting of four homologous domains, each with six transmembrane regions, of which one is a voltage sensor.

Structure of Nav1.8, an a-type subunit with four homologous domains, each with six transmembrane regions. Each domain has a voltage sensor (purple). The 'P' represents the phosphorylation sites of Protein kinase A; N and C indicate the amino and carboxy termini of the protein chain. This image has been adapted from 'The trafficking of Nav1.8' Alpha subunit structure of Nav1.8.png
Structure of Nav1.8, an α-type subunit with four homologous domains, each with six transmembrane regions. Each domain has a voltage sensor (purple). The 'P' represents the phosphorylation sites of Protein kinase A; N and C indicate the amino and carboxy termini of the protein chain. This image has been adapted from 'The trafficking of Nav1.8'

Voltage clamp methods have demonstrated that NaV1.8 is unique, among sodium channels, in exhibiting relatively depolarized steady-state inactivation. Thus, NaV1.8 remains available to operate, when neurons are depolarized to levels that inactivate other sodium channels. Voltage clamp has been used to show how action potentials in DRG cells are shaped by TTX-resistant sodium channels. Nav1.8 contributes the most to sustaining the depolarizing stage of action repetitive high-frequency potentials in nociceptive sensory neurons because it activates quickly and remaining activated after detecting a noxious stimulus. [14] [15] Therefore, Nav1.8 contributes to hyperalgesia (increased sensitivity to pain) and allodynia (pain from stimuli that do not usually cause it), which are elements of chronic pain. [16] Nav1.8 knockout mice studies have shown that the channel is associated with inflammatory and neuropathic pain. [9] [17] [18] Moreover, Nav1.8 plays a crucial role in cold pain. [19] Reducing the temperature from 30 °C to 10 °C slows the activation of VGSCs and hence decreases the current. However, Nav1.8 is cold-resistant and is able to generate action potentials in the cold to carry information from nociceptors to the central nervous system (CNS). Furthermore, Nav1.8-null mice failed to produce action potentials, indicating that Nav1.8 is essential to the perception of pain in cold temperatures. [19]

Although the early studies on the biophysics of NaV1.8 channels were carried out in rodent channels, more recent studies have examined the properties of human NaV1.8 channels. Notably, human NaV1.8 channels exhibit an inactivation voltage-dependence that is even more depolarized than that in rodents, and it also exhibits a larger persistent current. [20] Thus, the influence of human NaV1.8 channels on firing of sensory neurons may be even larger than that of rodent NaV1.8 channels.

Gain-of-function mutations of NaV1.8, identified in patients with painful peripheral neuropathies, have been found to make DRG neurons hyper excitable, and thus are causes of pain. [21] [22] Although NaV1.8 is not normally expressed within the cerebellum, its expression is up-regulated in cerebellar Purkinje cells in animal models of MS (Multiple Sclerosis), and in human MS. [23] The presence of NaV1.8 channels within these cerebellar neurons, where it is not normally present, increases their excitability and alters their firing pattern in vitro, [24] and in rodents with experimental autoimmune encephalomyelitis, a model of MS. [25] At a behavioral level, the ectopic expression of NaV1.8 within cerebellar Purkinje neurons has been shown to impair motor performance in a transgenic model. [26]

Clinical significance

Pain signalling pathways

Nociceptors are different from other sensory neurons in that they have a low activating threshold and consequently increase their response to constant stimuli. Therefore, nociceptors are easily sensitised by agents such as bradykinin and nerve growth factor, which are released at the site of tissue injury, ultimately causing changes to ion channel conductance. VGSCs have been shown to increase in density after nerve injury. [27] Therefore, VGSCs can be modulated by many different hyperalgesic agents that are released after nerve injury. Further examples include prostaglandin E2 (PGE2), serotonin and adenosine, which all act to increase the current through Nav1.8. [28]

Prostaglandins such as PGE2 can sensitise nociceptors to thermal, chemical and mechanical stimuli and increase the excitability of DRG sensory neurons. This occurs because PGE2 modulates the trafficking of Nav1.8 by binding to G-protein-coupled EP2 receptor, which in turn activates protein kinase A. [29] [30] Protein kinase A phosphorylates Nav1.8 at intracellular sites, resulting in increased sodium ion currents. Evidence for a link between PGE2 and hyperalgesia comes from an antisense deoxynucleotide knockdown of Nav1.8 in the DRG of rats. [31] Another modulator of Nav1.8 is the ε isoform of PKC. This isoform is activated by the inflammatory mediator bradykinin and phosphorylates Nav1.8, causing an increase in sodium current in the sensory neurons, which promotes mechanical hyperalgesia. [32]

Brugada syndrome

Mutations in SCN10A are associated with Brugada syndrome. [33] [34] [35]

Membrane trafficking

Nerve growth factor levels in inflamed or injured tissues are increased creating an increased sensitivity to pain (hyperalgesia). [36] The increased levels of nerve growth factor and tumour necrosis factor-α (TNF-α) causes the upregulation of Nav1.8 in sensory neurons via the accessory protein p11 (annexin II light chain). It has been shown using the yeast-two hybrid screening method that p11 binds to a 28-amino-acid fragment at the N terminus of Nav1.8 and promotes its translocation to the plasma membrane. This contributes to the hyperexcitability of sensory neurons during pain. [37] p11-null nociceptive sensory neurons in mice, created using the Cre-loxP recombinase system, show a decrease in Nav1.8 expression at the plasma membrane. [38] Therefore, disrupting the interactions between p11 and Nav1.8 may be a good therapeutic target for lowering pain.

In myelinated fibres, VGSCs are located at the nodes of Ranvier; however, in unmyelinated fibres, the exact location of VGSCs has not been determined. Nav1.8 in unmyelinated fibres has been found in clusters associated with lipid rafts along DRG fibers both in vitro and in vivo . [39] Lipid rafts organise the cell membrane, which includes trafficking and localising ion channels. Removal of lipid rafts in the membrane using MβCD, which depletes cholesterol from the plasma membrane, leads to a shift of Nav1.8 to a non-raft portion of the membrane, causing reduced action potential firing and propagation. [39]

Painful peripheral neuropathies

Painful peripheral neuropathies or small-fibre neuropathies are disorders of unmyelinated nociceptive C-fibres causing neuropathic pain; in some cases there is no known cause. [40] Genetic screening of patients with these idiopathic neuropathies has uncovered mutations in the SCN9A gene, encoding the related channel Nav1.7. A gain-of-function mutation in Nav1.7 located in the DRG sensory neurons was found in nearly 30% of patients with idiopathic small fiber neuropathy in one study. [41] This gain-of-function mutation causes an increase in excitability (hyperexcitability) of DRG sensory neurons and thus an increase in pain. Nav1.7 thus been shown to be linked to human pain; Nav1.8, by contrast, had only been associated to pain in animal studies until recently. A gain-of-function mutation was found in the Nav1.8-encoding SCN10A gene in patients with painful peripheral neuropathy. [21] A study of 104 patients with idiopathic peripheral neuropathies who did not have the mutation in SCN9A used voltage clamp and current clamp methods, along with predictive algorithms, and yielded two gain-of-function mutations in SCN10A in three patients. Both mutations cause increased excitability in DRG sensory neurons and hence contribute to pain, but the mechanism by which they do so is not understood.

Related Research Articles

Congenital insensitivity to pain (CIP), also known as congenital analgesia, is one or more extraordinarily rare conditions in which a person cannot feel physical pain. The conditions described here are separate from the HSAN group of disorders, which have more specific signs and cause. Because feeling physical pain is vital for survival, CIP is an extremely dangerous condition. It is common for people with the condition to die in childhood due to injuries or illnesses going unnoticed. Burn injuries are among the more common injuries.

<span class="mw-page-title-main">Erythromelalgia</span> Medical condition

Erythromelalgia or Mitchell's disease is a rare vascular peripheral pain disorder in which blood vessels, usually in the lower extremities or hands, are episodically blocked, then become hyperemic and inflamed. There is severe burning pain and skin redness. The attacks are periodic and are commonly triggered by heat, pressure, mild activity, exertion, insomnia or stress. Erythromelalgia may occur either as a primary or secondary disorder. Secondary erythromelalgia can result from small fiber peripheral neuropathy of any cause, polycythemia vera, essential thrombocytosis, hypercholesterolemia, mushroom or mercury poisoning, and some autoimmune disorders. Primary erythromelalgia is caused by mutation of the voltage-gated sodium channel α-subunit gene SCN9A.

Sodium channels are integral membrane proteins that form ion channels, conducting sodium ions (Na+) through a cell's membrane. They belong to the superfamily of cation channels and can be classified according to the trigger that opens the channel for such ions, i.e. either a voltage-change ("voltage-gated", "voltage-sensitive", or "voltage-dependent" sodium channel; also called "VGSCs" or "Nav channel") or a binding of a substance (a ligand) to the channel (ligand-gated sodium channels).

Na<sub>v</sub>1.4 Protein-coding gene in the species Homo sapiens

Sodium channel protein type 4 subunit alpha is a protein that in humans is encoded by the SCN4A gene.

SCN5A Protein-coding gene in the species Homo sapiens

Sodium channel protein type 5 subunit alpha, also known as NaV1.5 is an integral membrane protein and tetrodotoxin-resistant voltage-gated sodium channel subunit. NaV1.5 is found primarily in cardiac muscle, where it mediates the fast influx of Na+-ions (INa) across the cell membrane, resulting in the fast depolarization phase of the cardiac action potential. As such, it plays a major role in impulse propagation through the heart. A vast number of cardiac diseases is associated with mutations in NaV1.5 (see paragraph genetics). SCN5A is the gene that encodes the cardiac sodium channel NaV1.5.

Small fiber peripheral neuropathy is a type of peripheral neuropathy that occurs from damage to the small unmyelinated and myelinated peripheral nerve fibers. These fibers, categorized as C fibers and small Aδ fibers, are present in skin, peripheral nerves, and organs. The role of these nerves is to innervate the skin and help control autonomic function. It is estimated that 15–20 million people in the United States have some form of peripheral neuropathy.

Na<sub>v</sub>1.7 Protein-coding gene in the species Homo sapiens

Nav1.7 is a sodium ion channel that in humans is encoded by the SCN9A gene. It is usually expressed at high levels in two types of neurons: the nociceptive (pain) neurons at dorsal root ganglion (DRG) and trigeminal ganglion and sympathetic ganglion neurons, which are part of the autonomic (involuntary) nervous system.

Paralytic is a gene in the fruit fly, Drosophila melanogaster, which encodes a voltage gated sodium channel within D. melanogaster neurons. This gene is essential for locomotive activity in the fly. There are 9 different para alleles, composed of a minimum of 26 exons within over 78kb of genomic DNA. The para gene undergoes alternative splicing to produce subtypes of the channel protein. Flies with mutant forms of paralytic are used in fly models of seizures, since seizures can be easily induced in these flies.

Na<sub>v</sub>1.9 Protein-coding gene in the species Homo sapiens

Sodium channel, voltage-gated, type XI, alpha subunit also known as SCN11A or Nav1.9 is a voltage-gated sodium ion channel protein which is encoded by the SCN11A gene on chromosome 3 in humans. Like Nav1.7 and Nav1.8, Nav1.9 plays a role in pain perception. This channel is largely expressed in small-diameter nociceptors of the dorsal root ganglion and trigeminal ganglion neurons, but is also found in intrinsic myenteric neurons.

SCN1A Protein-coding gene in the species Homo sapiens

Sodium channel protein type 1 subunit alpha (SCN1A), is a protein which in humans is encoded by the SCN1A gene.

SCN2A Protein-coding gene in the species Homo sapiens

Sodium channel protein type 2 subunit alpha , is a protein that in humans is encoded by the SCN2A gene. Functional sodium channels contain an ion conductive alpha subunit and one or more regulatory beta subunits. Sodium channels which contain sodium channel protein type 2 subunit alpha are sometimes called Nav1.2 channels.

<span class="mw-page-title-main">SCN3B</span> Protein-coding gene in the species Homo sapiens

Sodium channel subunit beta-3 is a protein that in humans is encoded by the SCN3B gene. Two alternatively spliced variants, encoding the same protein, have been identified.

<span class="mw-page-title-main">SCN1B</span> Protein-coding gene in the species Homo sapiens

Sodium channel subunit beta-1 is a protein that in humans is encoded by the SCN1B gene.

<span class="mw-page-title-main">SCN3A</span> Protein-coding gene in humans

Sodium channel, voltage-gated, type III, alpha subunit (SCN3A) is a protein that in humans is encoded by the SCN3A gene.

<span class="mw-page-title-main">SCN8A</span> Protein-coding gene in the species Homo sapiens

Sodium channel protein type 8 subunit alpha also known as Nav1.6 is a membrane protein encoded by the SCN8A gene. Nav1.6 is one sodium channel isoform and is the primary voltage-gated sodium channel at each node of Ranvier. The channels are highly concentrated in sensory and motor axons in the peripheral nervous system and cluster at the nodes in the central nervous system.

<span class="mw-page-title-main">SCN7A</span> Protein-coding gene in the species Homo sapiens

Sodium channel protein type 7 subunit alpha is a protein that in humans is encoded by the SCN7A gene on the chromosome specifically located at 2q21-23 chromosome site. This is one of 10 Sodium channel types, and is expressed in the heart, the uterus and in glial cells. Its sequence identity is 48, and it is the only sodium channel known to be completely un-blockable by tetrodotoxin (TTX).

Jingzhaotoxin proteins are part of a venom secreted by Chilobrachys jingzhao, the Chinese tarantula. and act as neurotoxins. There are several subtypes of jingzhaotoxin, which differ in terms of channel selectivity and modification characteristics. All subspecies act as gating modifiers of sodium channels and/or, to a lesser extent, potassium channels.

<span class="mw-page-title-main">Neosaxitoxin</span> Chemical compound

Neosaxitoxin (NSTX) is included, as other saxitoxin-analogs, in a broad group of natural neurotoxic alkaloids, commonly known as the paralytic shellfish toxins (PSTs). The parent compound of PSTs, saxitoxin (STX), is a tricyclic perhydropurine alkaloid, which can be substituted at various positions, leading to more than 30 naturally occurring STX analogues. All of them are related imidazoline guanidinium derivatives.

<span class="mw-page-title-main">Stephen Waxman</span> American neurologist and neuroscientist

Stephen George Waxman is an American neurologist and neuroscientist. He served as Chairman of the Department of Neurology at Yale School of Medicine, and Neurologist-in-Chief at Yale-New Haven Hospital from 1986 until 2009. As of 2018, he is the Bridget Flaherty Professor of Neurology, Neurobiology, and Pharmacology at Yale University. He founded the Yale University Neuroscience & Regeneration Research Center in 1988 and is its Director. He previously held faculty positions at Harvard Medical School, MIT, and Stanford Medical School. He is also visiting professor at University College London. He is the editor-in-chief of The Neuroscientist and Neuroscience Letters.

μ-THTX-Cl6a, also known as Cl6a, is a 33-residue peptide toxin extracted from the venom of the spider Cyriopagopus longipes. The toxin acts as an inhibitor of the tetrodotoxin-sensitive (TTX-S) voltage-gated sodium channel (NaV1.7), thereby causing sustained reduction of NaV1.7 currents.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000185313 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000034533 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: sodium channel".
  6. Rabert DK, Koch BD, Ilnicka M, Obernolte RA, Naylor SL, Herman RC, Eglen RM, Hunter JC, Sangameswaran L (November 1998). "A tetrodotoxin-resistant voltage-gated sodium channel from human dorsal root ganglia, hPN3/SCN10A". Pain. 78 (2): 107–14. doi:10.1016/S0304-3959(98)00120-1. PMID   9839820. S2CID   45480324.
  7. Plummer NW, Meisler MH (April 1999). "Evolution and diversity of mammalian sodium channel genes". Genomics. 57 (2): 323–31. doi:10.1006/geno.1998.5735. PMID   10198179.
  8. Catterall WA, Goldin AL, Waxman SG (December 2005). "International Union of Pharmacology. XLVII. Nomenclature and structure-function relationships of voltage-gated sodium channels". Pharmacological Reviews. 57 (4): 397–409. doi:10.1124/pr.57.4.4. PMID   16382098. S2CID   7332624.
  9. 1 2 Akopian AN, Souslova V, England S, Okuse K, Ogata N, Ure J, Smith A, Kerr BJ, McMahon SB, Boyce S, Hill R, Stanfa LC, Dickenson AH, Wood JN (June 1999). "The tetrodotoxin-resistant sodium channel SNS has a specialized function in pain pathways". Nature Neuroscience. 2 (6): 541–8. doi:10.1038/9195. PMID   10448219. S2CID   17487906.
  10. Akopian AN, Sivilotti L, Wood JN (January 1996). "A tetrodotoxin-resistant voltage-gated sodium channel expressed by sensory neurons". Nature. 379 (6562): 257–62. Bibcode:1996Natur.379..257A. doi:10.1038/379257a0. PMID   8538791. S2CID   4360775.
  11. Cummins TR, Sheets PL, Waxman SG (October 2007). "The roles of sodium channels in nociception: Implications for mechanisms of pain". Pain. 131 (3): 243–57. doi:10.1016/j.pain.2007.07.026. PMC   2055547 . PMID   17766042.
  12. 1 2 Swanwick RS, Pristerá A, Okuse K (December 2010). "The trafficking of Na(V)1.8". Neuroscience Letters. 486 (2): 78–83. doi:10.1016/j.neulet.2010.08.074. PMC   2977848 . PMID   20816723.
  13. Strickland IT, Martindale JC, Woodhams PL, Reeve AJ, Chessell IP, McQueen DS (July 2008). "Changes in the expression of NaV1.7, NaV1.8 and NaV1.9 in a distinct population of dorsal root ganglia innervating the rat knee joint in a model of chronic inflammatory joint pain". European Journal of Pain. 12 (5): 564–72. doi:10.1016/j.ejpain.2007.09.001. PMID   17950013. S2CID   24952010.
  14. Blair NT, Bean BP (2002). "Roles of Tetrodotoxin (TTX)-Sensitive Na+ Current, TTX-Resistant Na+ Current, and Ca2+ Current in the Action Potentials of Nociceptive Sensory Neurons". The Journal of Neuroscience . 22 (23): 10277–10290. doi:10.1523/JNEUROSCI.22-23-10277.2002. PMC   6758735 . PMID   12451128.
  15. Renganathan M, Cummins TR & Waxman SG (2001). "Contribution of Nav1.8 Sodium Channels to Action Potential Electrogenesis in DRG Neurons". Journal of Neurophysiology . 86 (2): 629–640. doi:10.1152/jn.2001.86.2.629. PMID   11495938. S2CID   11579149.
  16. Millan MJ (1999). "The induction of pain: an integrative review". Progress in Neurobiology . 57 (1): 1–164. doi:10.1016/S0301-0082(98)00048-3. PMID   9987804. S2CID   206054345.
  17. Matthews EA, Wood JN, Dickenson AH (February 2006). "Na(v) 1.8-null mice show stimulus-dependent deficits in spinal neuronal activity". Molecular Pain. 2: 1744-8069–2-5. doi:10.1186/1744-8069-2-5. PMC   1403745 . PMID   16478543.
  18. Jarvis MF, Honore P, Shieh CC, Chapman M, Joshi S, Zhang XF, Kort M, Carroll W, Marron B, Atkinson R, Thomas J, Liu D, Krambis M, Liu Y, McGaraughty S, Chu K, Roeloffs R, Zhong C, Mikusa JP, Hernandez G, Gauvin D, Wade C, Zhu C, Pai M, Scanio M, Shi L, Drizin I, Gregg R, Matulenko M, Hakeem A, Gross M, Johnson M, Marsh K, Wagoner PK, Sullivan JP, Faltynek CR, Krafte DS (May 2007). "A-803467, a potent and selective Nav1.8 sodium channel blocker, attenuates neuropathic and inflammatory pain in the rat". Proceedings of the National Academy of Sciences of the United States of America. 104 (20): 8520–5. doi: 10.1073/pnas.0611364104 . PMC   1895982 . PMID   17483457.
  19. 1 2 Zimmermann K, Leffler A, Babes A, Cendan CM, Carr RW, Kobayashi J, Nau C, Wood JN, Reeh PW (June 2007). "Sensory neuron sodium channel Nav1.8 is essential for pain at low temperatures". Nature. 447 (7146): 855–8. Bibcode:2007Natur.447..856Z. doi:10.1038/nature05880. PMID   17568746. S2CID   4391511.
  20. Han C, Estacion M, Huang J, Vasylyev D, Zhao P, Dib-Hajj SD, Waxman SG (May 2015). "Human Na(v)1.8: enhanced persistent and ramp currents contribute to distinct firing properties of human DRG neurons". Journal of Neurophysiology. 113 (9): 3172–85. doi:10.1152/jn.00113.2015. PMC   4432682 . PMID   25787950.
  21. 1 2 Faber CG, Lauria G, Merkies IS, Cheng X, Han C, Ahn HS, Persson AK, Hoeijmakers JG, Gerrits MM, Pierro T, Lombardi R, Kapetis D, Dib-Hajj SD, Waxman SG (November 2012). "Gain-of-function Nav1.8 mutations in painful neuropathy". Proceedings of the National Academy of Sciences of the United States of America. 109 (47): 19444–9. Bibcode:2012PNAS..10919444F. doi: 10.1073/pnas.1216080109 . PMC   3511073 . PMID   23115331.
  22. Huang J, Yang Y, Zhao P, Gerrits MM, Hoeijmakers JG, Bekelaar K, Merkies IS, Faber CG, Dib-Hajj SD, Waxman SG (August 2013). "Small-fiber neuropathy Nav1.8 mutation shifts activation to hyperpolarized potentials and increases excitability of dorsal root ganglion neurons". The Journal of Neuroscience. 33 (35): 14087–97. doi:10.1523/JNEUROSCI.2710-13.2013. PMC   6618513 . PMID   23986244.
  23. Black JA, Dib-Hajj S, Baker D, Newcombe J, Cuzner ML, Waxman SG (October 2000). "Sensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis". Proceedings of the National Academy of Sciences of the United States of America. 97 (21): 11598–602. Bibcode:2000PNAS...9711598B. doi: 10.1073/pnas.97.21.11598 . PMC   17246 . PMID   11027357.
  24. Renganathan M, Gelderblom M, Black JA, Waxman SG (January 2003). "Expression of Nav1.8 sodium channels perturbs the firing patterns of cerebellar Purkinje cells". Brain Research. 959 (2): 235–42. doi:10.1016/s0006-8993(02)03750-2. PMID   12493611. S2CID   34784900.
  25. Saab CY, Craner MJ, Kataoka Y, Waxman SG (September 2004). "Abnormal Purkinje cell activity in vivo in experimental allergic encephalomyelitis". Experimental Brain Research. 158 (1): 1–8. doi:10.1007/s00221-004-1867-4. PMID   15118796. S2CID   34656521.
  26. Shields SD, Cheng X, Gasser A, Saab CY, Tyrrell L, Eastman EM, Iwata M, Zwinger PJ, Black JA, Dib-Hajj SD, Waxman SG (February 2012). "A channelopathy contributes to cerebellar dysfunction in a model of multiple sclerosis". Annals of Neurology. 71 (2): 186–94. doi:10.1002/ana.22665. PMID   22367990. S2CID   25128887.
  27. Devor M; Govrin-Lippmann R & Angelides (1993). "Na+ Channel lmmunolocalization in Peripheral Mammalian Axons and Changes following Nerve Injury and Neuroma Formation". The Journal of Neuroscience . 13 (5): 1976–1992. doi:10.1523/JNEUROSCI.13-05-01976.1993. PMC   6576562 . PMID   7683047.
  28. Gold MS, Reichling DB, Shuster MJ, Levine JD (February 1996). "Hyperalgesic agents increase a tetrodotoxin-resistant Na+ current in nociceptors". Proceedings of the National Academy of Sciences of the United States of America. 93 (3): 1108–12. Bibcode:1996PNAS...93.1108G. doi: 10.1073/pnas.93.3.1108 . PMC   40039 . PMID   8577723.
  29. Hector TH (January 1975). "A simple method for making chromatographic records using transparent acetate sheet". The Journal of Physiology. 32 (1): 31–2. doi:10.1113/jphysiol.1996.sp021604. PMC   1160802 . PMID   8887754.
  30. Liu C, Li Q, Su Y, Bao L (March 2010). "Prostaglandin E2 promotes Na1.8 trafficking via its intracellular RRR motif through the protein kinase A pathway". Traffic. 11 (3): 405–17. doi: 10.1111/j.1600-0854.2009.01027.x . PMID   20028484. S2CID   997800.
  31. Khasar SG, Gold MS & Levine JD (1998). "A tetrodotoxin-resistant sodium current mediates inflammatory pain in the rat". Neuroscience Letters . 256 (1): 17–20. doi:10.1016/s0304-3940(98)00738-1. PMID   9832206. S2CID   5614913.
  32. Wu DF, Chandra D, McMahon T, Wang D, Dadgar J, Kharazia VN, Liang YJ, Waxman SG, Dib-Hajj SD, Messing RO (April 2012). "PKCε phosphorylation of the sodium channel NaV1.8 increases channel function and produces mechanical hyperalgesia in mice". The Journal of Clinical Investigation. 122 (4): 1306–15. doi:10.1172/JCI61934. PMC   3315445 . PMID   22426212.
  33. Hu D, Barajas-Martínez H, Pfeiffer R, Dezi F, Pfeiffer J, Buch T, Betzenhauser MJ, Belardinelli L, Kahlig KM, Rajamani S, DeAntonio HJ, Myerburg RJ, Ito H, Deshmukh P, Marieb M, Nam GB, Bhatia A, Hasdemir C, Haïssaguerre M, Veltmann C, Schimpf R, Borggrefe M, Viskin S, Antzelevitch C (July 2014). "Mutations in SCN10A are responsible for a large fraction of cases of Brugada syndrome". Journal of the American College of Cardiology. 64 (1): 66–79. doi:10.1016/j.jacc.2014.04.032. PMC   4116276 . PMID   24998131.
  34. Monasky MM, Micaglio E, Vicedomini G, Locati ET, Ciconte G, Giannelli L, Giordano F, Crisà S, Vecchi M, Borrelli V, Ghiroldi A, D'Imperio S, Di Resta C, Benedetti S, Ferrari M, Santinelli V, Anastasia L, Pappone C (2019). "Comparable clinical characteristics in Brugada syndrome patients harboring SCN5A or novel SCN10A variants". Europace. 21 (10): 1550–1558. doi:10.1093/europace/euz186. PMID   31292628 . Retrieved 27 April 2021.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  35. Monasky MM, Micaglio E, Ciconte G, Pappone C (2020). "Brugada Syndrome: Oligogenic or Mendelian Disease?". Int J Mol Sci. 21 (5): 1687. doi: 10.3390/ijms21051687 . PMC   7084676 . PMID   32121523.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  36. McMahon SB (March 1996). "NGF as a mediator of inflammatory pain". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 351 (1338): 431–40. Bibcode:1996RSPTB.351..431M. doi:10.1098/rstb.1996.0039. PMID   8730782.
  37. Okuse K, Malik-Hall M, Baker MD, Poon WY, Kong H, Chao MV, Wood JN (June 2002). "Annexin II light chain regulates sensory neuron-specific sodium channel expression". Nature. 417 (6889): 653–6. Bibcode:2002Natur.417..653O. doi:10.1038/nature00781. PMID   12050667. S2CID   4423351.
  38. Foulkes T, Nassar MA, Lane T, Matthews EA, Baker MD, Gerke V, Okuse K, Dickenson AH, Wood JN (October 2006). "Deletion of annexin 2 light chain p11 in nociceptors causes deficits in somatosensory coding and pain behavior" (PDF). The Journal of Neuroscience. 26 (41): 10499–507. doi:10.1523/JNEUROSCI.1997-06.2006. PMC   6674704 . PMID   17035534.
  39. 1 2 Pristerà A, Baker MD, Okuse K (2012). "Association between tetrodotoxin resistant channels and lipid rafts regulates sensory neuron excitability". PLOS ONE. 7 (8): e40079. Bibcode:2012PLoSO...740079P. doi: 10.1371/journal.pone.0040079 . PMC   3411591 . PMID   22870192.
  40. Hoeijmakers JG, Faber CG, Lauria G, Merkies IS, Waxman SG (May 2012). "Small-fibre neuropathies--advances in diagnosis, pathophysiology and management". Nature Reviews. Neurology. 8 (7): 369–79. doi:10.1038/nrneurol.2012.97. PMID   22641108. S2CID   8804151.
  41. Faber CG, Hoeijmakers JG, Ahn HS, Cheng X, Han C, Choi JS, Estacion M, Lauria G, Vanhoutte EK, Gerrits MM, Dib-Hajj S, Drenth JP, Waxman SG, Merkies IS (January 2012). "Gain of function Naν1.7 mutations in idiopathic small fiber neuropathy". Annals of Neurology. 71 (1): 26–39. doi:10.1002/ana.22485. PMID   21698661. S2CID   11711575.

Further reading