Solar eclipse of October 24, 1995 | |
---|---|
Type of eclipse | |
Nature | Total |
Gamma | 0.3518 |
Magnitude | 1.0213 |
Maximum eclipse | |
Duration | 130 s (2 min 10 s) |
Coordinates | 8°24′N113°12′E / 8.4°N 113.2°E |
Max. width of band | 78 km (48 mi) |
Times (UTC) | |
Greatest eclipse | 4:33:30 |
References | |
Saros | 143 (22 of 72) |
Catalog # (SE5000) | 9498 |
A total solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, October 24, 1995, with a magnitude of 1.0213. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The path of totality went through Iran, Afghanistan, Pakistan, India, southwestern tip of Bangladesh, Burma, Thailand, Cambodia, Vietnam, Spratly Islands, northeastern tip of Sabah of Malaysia, Philippines and Indonesia.
An aerial observation of this eclipse was done over India, [1] when a MiG-25 reconnaissance aircraft of the Indian Air Force was used to take images of this eclipse at an altitude of 25 km. [2]
The Indian Institute of Astrophysics established camps along the path of totality in Rajasthan, Uttar Pradesh, Iradatganj and Diamond Harbour near Kolkata. Astronomers from other institutions and abroad from the Slovakia, Brazil, Russia, Japan and Germany joined IIA at its camps. An IIA team also photographed the eclipse by chasing the Moon’s shadow in an Indian Air Force plane AN-32 from the crew escape hatch on the roof of the cockpit at an altitude of 10,000 feet (3,000 m) above the sea level, which was the first time efforts made by the institute. Doordarshan and All India Radio made live coverages of the eclipse. The eclipse happened to occur on the day of the Diwali. [3]
Within the Spratly Islands claimed by China, only Cuarteron Reef was controlled by China and lay in the path of totality. Instead of going to the faraway island, The Popular Science Committee of the Chinese Astronomical Society, Beijing Astronomical Society, Beijing Planetarium and Beijing Astronomical Observatory (now incorporated into the National Astronomical Observatories of China) jointly organized observations abroad for the first time. A team of 4 was sent to Sikhio district, Nakhon Ratchasima, Thailand by the Beijing Planetarium, and successfully photographed the whole process of the eclipse, the corona at the greatest eclipse, and the Baily's beads at the 2nd and 3rd contact. [4]
In addition, the Chinese Academy of Sciences, Ministry of Electronics Industry, China Earthquake Administration, State Education Commission (now Ministry of Education) and departments in charge of water conservancy and meteorology conducted joint observations on changes of solar radiation, ionosphere, geomagnetic field, radio and acoustic heavy waves, mainly in the Paracel Islands, Sanya, Haikou and Zhengzhou. From all these places, only a partial solar eclipse was visible instead of a total solar eclipse. [5]
Phil Whitaker's prize-winning debut novel Eclipse of the Sun published in 1997 and set in India has at its centre a dramatic attempt to organize a public viewing of the eclipse.
This eclipse is a member of a semester series. An eclipse in a semester series of solar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit. [7]
Solar eclipse series sets from 1993 to 1996 | ||||||
---|---|---|---|---|---|---|
Descending node | Ascending node | |||||
Saros | Map | Gamma | Saros | Map | Gamma | |
118 | May 21, 1993 Partial | 1.1372 | 123 | November 13, 1993 Partial | −1.0411 | |
128 Partial in Bismarck, ND, USA | May 10, 1994 Annular | 0.4077 | 133 Totality in Bolivia | November 3, 1994 Total | −0.3522 | |
138 | April 29, 1995 Annular | −0.3382 | 143 Totality in Dundlod, India | October 24, 1995 Total | 0.3518 | |
148 | April 17, 1996 Partial | −1.058 | 153 | October 12, 1996 Partial | 1.1227 |
This eclipse is a part of Saros series 143, repeating every 18 years, 11 days, and containing 72 events. The series started with a partial solar eclipse on March 7, 1617. It contains total eclipses from June 24, 1797 through October 24, 1995; hybrid eclipses from November 3, 2013 through December 6, 2067; and annular eclipses from December 16, 2085 through September 16, 2536. The series ends at member 72 as a partial eclipse on April 23, 2897. Its eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
The longest duration of totality was produced by member 16 at 3 minutes, 50 seconds on August 19, 1887, and the longest duration of annularity will be produced by member 51 at 4 minutes, 54 seconds on September 6, 2518. All eclipses in this series occur at the Moon’s ascending node of orbit. [8]
Series members 12–33 occur between 1801 and 2200: | ||
---|---|---|
12 | 13 | 14 |
July 6, 1815 | July 17, 1833 | July 28, 1851 |
15 | 16 | 17 |
August 7, 1869 | August 19, 1887 | August 30, 1905 |
18 | 19 | 20 |
September 10, 1923 | September 21, 1941 | October 2, 1959 |
21 | 22 | 23 |
October 12, 1977 | October 24, 1995 | November 3, 2013 |
24 | 25 | 26 |
November 14, 2031 | November 25, 2049 | December 6, 2067 |
27 | 28 | 29 |
December 16, 2085 | December 29, 2103 | January 8, 2122 |
30 | 31 | 32 |
January 20, 2140 | January 30, 2158 | February 10, 2176 |
33 | ||
February 21, 2194 |
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | ||||
---|---|---|---|---|
April 4, 1810 (Saros 126) | March 4, 1821 (Saros 127) | February 1, 1832 (Saros 128) | December 31, 1842 (Saros 129) | November 30, 1853 (Saros 130) |
October 30, 1864 (Saros 131) | September 29, 1875 (Saros 132) | August 29, 1886 (Saros 133) | July 29, 1897 (Saros 134) | June 28, 1908 (Saros 135) |
May 29, 1919 (Saros 136) | April 28, 1930 (Saros 137) | March 27, 1941 (Saros 138) | February 25, 1952 (Saros 139) | January 25, 1963 (Saros 140) |
December 24, 1973 (Saros 141) | November 22, 1984 (Saros 142) | October 24, 1995 (Saros 143) | September 22, 2006 (Saros 144) | August 21, 2017 (Saros 145) |
July 22, 2028 (Saros 146) | June 21, 2039 (Saros 147) | May 20, 2050 (Saros 148) | April 20, 2061 (Saros 149) | March 19, 2072 (Saros 150) |
February 16, 2083 (Saros 151) | January 16, 2094 (Saros 152) | December 17, 2104 (Saros 153) | November 16, 2115 (Saros 154) | October 16, 2126 (Saros 155) |
September 15, 2137 (Saros 156) | August 14, 2148 (Saros 157) | July 15, 2159 (Saros 158) | June 14, 2170 (Saros 159) | May 13, 2181 (Saros 160) |
April 12, 2192 (Saros 161) |
The metonic series repeats eclipses every 19 years (6939.69 days), lasting about 5 cycles. Eclipses occur in nearly the same calendar date. In addition, the octon subseries repeats 1/5 of that or every 3.8 years (1387.94 days). All eclipses in this table occur at the Moon's ascending node.
22 eclipse events between January 5, 1935 and August 11, 2018 | ||||
---|---|---|---|---|
January 4–5 | October 23–24 | August 10–12 | May 30–31 | March 18–19 |
111 | 113 | 115 | 117 | 119 |
January 5, 1935 | August 12, 1942 | May 30, 1946 | March 18, 1950 | |
121 | 123 | 125 | 127 | 129 |
January 5, 1954 | October 23, 1957 | August 11, 1961 | May 30, 1965 | March 18, 1969 |
131 | 133 | 135 | 137 | 139 |
January 4, 1973 | October 23, 1976 | August 10, 1980 | May 30, 1984 | March 18, 1988 |
141 | 143 | 145 | 147 | 149 |
January 4, 1992 | October 24, 1995 | August 11, 1999 | May 31, 2003 | March 19, 2007 |
151 | 153 | 155 | ||
January 4, 2011 | October 23, 2014 | August 11, 2018 |
A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, December 4, 2002, with a magnitude of 1.0244. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. It was visible from a narrow corridor in southern Africa, the Indian Ocean and southern Australia. A partial eclipse was seen from the much broader path of the Moon's penumbra, including most of Africa and Australia. During the sunset after the eclipse many observers in Australia saw numerous and unusual forms of a green flash.
A total solar eclipse occurred at the Moon's ascending node of orbit on Thursday, June 21, 2001, with a magnitude of 1.0495. It was the first solar eclipse of the 21st century. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring 2.2 days before perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's descending node of orbit on Thursday, July 11, 1991, with a magnitude of 1.08. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality began over the Pacific Ocean and Hawaii moving across Mexico, down through Central America and across South America ending over Brazil. It lasted for 6 minutes and 53.08 seconds at the point of maximum eclipse. There will not be a longer total eclipse until June 13, 2132. This was the largest total solar eclipse of Solar Saros series 136.
A total solar eclipse occurred at the Moon's descending node of orbit on Sunday, March 9, 1997, with a magnitude of 1.042. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in eastern Russia, Northern Mongolia, northern tip of Xinjiang and Northeastern China and eastern tip of Kazakhstan.
A total solar eclipse will occur at the Moon's descending node of orbit on Monday, March 20, 2034, with a magnitude of 1.0458. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality will be visible in 13 countries: from east to west, Benin, Nigeria, Cameroon, Chad, Sudan, Egypt, Saudi Arabia, Kuwait, Iran, Afghanistan, Pakistan, India, and China.
A total solar eclipse occurred at the Moon's descending node of orbit on Saturday, February 16, 1980, with a magnitude of 1.0434. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The path of totality crossed central Africa, southern India, and into China at sunset. The southern part of Mount Kilimanjaro, the highest mountain in Africa, also lies in the path of totality. Occurring only about 24 hours before perigee, the Moon's apparent diameter was larger. This was a Supermoon Total Solar Eclipse because the Moon was just a day before perigee.
A total solar eclipse occurred at the Moon's descending node of orbit on Monday, February 5, 1962, with a magnitude of 1.043. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from Indonesia, Netherlands New Guinea, the Territory of Papua New Guinea, British Solomon Islands, and Palmyra Atoll.
An annular solar eclipse occurred at the Moon's descending node of orbit on Thursday, April 29, 1976, with a magnitude of 0.9421. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible from North Africa, Greece, Turkey, Middle East, central Asia, India, China. 5 of the 14 eight-thousanders in Pakistan and China—Nanga Parbat, K2, Broad Peak, Gasherbrum II and Gasherbrum I, lie in the path of annularity.
An annular solar eclipse occurred at the Moon's descending node of orbit on Saturday, April 19, 1958, with a magnitude of 0.9408. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in the Maldives, Nicobar Islands, Burma, Thailand including the capital city Bangkok, Cambodia, Laos, North Vietnam and South Vietnam, China, British Hong Kong, Taiwan, Ryukyu Islands and Japan. It was the fourth central solar eclipse visible from Bangkok from 1948 to 1958, where it is rare for a large city to witness 4 central solar eclipses in just 9.945 years. Places east of International Date line witnessed the eclipse on April 18 (Friday).
A total solar eclipse occurred at the Moon's ascending node of orbit on Saturday, June 11, 1983, with a magnitude of 1.0524. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Occurring only 48 hours before perigee, the Moon's apparent diameter was larger.
A total solar eclipse occurred at the Moon's ascending node of orbit on Tuesday, October 1, 1940, with a magnitude of 1.0645. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from Colombia, Brazil, Venezuela and South Africa.
A total solar eclipse occurred at the Moon's ascending node of orbit on Friday, September 9, 1904, with a magnitude of 1.0709. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from German New Guinea on September 10 and Chile on September 9.
A total solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, October 12, 1977, with a magnitude of 1.0269. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible in the Pacific Ocean, Colombia and Venezuela.
An annular solar eclipse occurred at the Moon's descending node of orbit on Wednesday, September 23, 1987, with a magnitude of 0.9634. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Annularity was visible in the Soviet Union, China, southwestern Mongolia, Okinawa Islands of Japan except Kume Island and the southwestern tip of Kerama Islands, the Federal States of Micronesia, Papua New Guinea, Solomon Islands, Rotuma Islands of Fiji, Wallis Islands and West Samoa. Occurring only 5 days after apogee, the Moon's apparent diameter was relatively small.
A total solar eclipse occurred at the Moon's descending node of orbit on Sunday, September 22, 1968, with a magnitude of 1.0099. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from the Soviet Union and Xinjiang in Northwestern China.
A total solar eclipse occurred at the Moon's descending node of orbit between Thursday, February 4 and Friday, February 5, 1943, with a magnitude of 1.0331. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. It began on the morning on February 5 (Friday) over northeastern China, Primorsky Krai in the Soviet Union, Hokkaido and southern Kunashir Island in Japan and ended at sunset on February 4 (Thursday) over Alaska and Yukon in Canada.
A total solar eclipse occurred at the Moon's ascending node of orbit on Wednesday, August 30, 1905, with a magnitude of 1.0477. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from Canada, Newfoundland Colony, Spain, French Algeria, French Tunisia, Ottoman Tripolitania include the capital Tripoli, Egypt, Ottoman Empire including Mecca, Emirate of Jabal Shammar, Aden Protectorate, and Muscat and Oman.
A total solar eclipse occurred at the Moon's descending node of orbit on Tuesday, January 25, 1944, with a magnitude of 1.0428. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from Peru, Brazil, British Sierra Leone, and French West Africa. At greatest eclipse, the Sun was 78 degrees above horizon.
A total solar eclipse occurred at the Moon's descending node of orbit on Wednesday, August 31, 1932, with a magnitude of 1.0257. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. Totality was visible from Northwest Territories and Quebec in Canada, and northeastern Vermont, New Hampshire, southwestern Maine, northeastern tip of Massachusetts and northeastern Cape Cod in the United States.
A total solar eclipse occurred at the Moon's descending node of orbit on Friday, August 21, 1914, with a magnitude of 1.0328. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. A total solar eclipse occurs when the Moon's apparent diameter is larger than the Sun's, blocking all direct sunlight, turning day into darkness. Totality occurs in a narrow path across Earth's surface, with the partial solar eclipse visible over a surrounding region thousands of kilometres wide. The totality of this eclipse was visible from northern Canada, Greenland, Norway, Sweden, Russian Empire, Ottoman Empire, Persia and British Raj . It was the first of four total solar eclipses that would be seen from Sweden during the next 40 years. This total solar eclipse occurred in the same calendar date as 2017, but at the opposite node. The moon was just 2.7 days before perigee, making it fairly large.
Photos: