Vasopressin receptor 1B

Last updated
AVPR1B
Identifiers
Aliases AVPR1B , AVPR3, arginine vasopressin receptor 1B, V1bR, VPR3
External IDs OMIM: 600264 MGI: 1347010 HomoloGene: 22678 GeneCards: AVPR1B
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_000707

NM_011924

RefSeq (protein)

NP_000698

NP_036054

Location (UCSC) Chr 1: 206.11 – 206.12 Mb Chr 1: 131.53 – 131.54 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Vasopressin V1b receptor (V1BR) also known as vasopressin 3 receptor (VPR3) or antidiuretic hormone receptor 1B is a protein that in humans is encoded by the AVPR1B (arginine vasopressin receptor 1B) gene.

Contents

V1BR acts as a receptor for vasopressin. AVPR1B belongs to the subfamily of G protein-coupled receptors. Its activity is mediated by G proteins which stimulate a phosphatidylinositol-calcium second messenger system. It is a major contributor to homeostasis and the control of water, glucose, and salts in the blood. Arginine vasopressin has four receptors, each of which are located in different tissues and have specific functions. AVPR1b is a G protein-coupled pituitary receptor that has only recently been characterized because of its rarity. [5]

It has been found that the 420-amino-acid sequence of the AVPR1B receptor shared the most overall similarities with the AVP1A, AVP2 and oxytocin receptors. [6] AVPR1B maps to chromosome region 1q32 and is a member of the vasopressin/oxytocin family subfamily. [7]

Tissue distribution

AVPR1B was initially described as a novel vasopressin receptor located in the anterior pituitary, where it stimulates ACTH release. [8] Subsequent studies have shown that it is also present in the brain and some peripheral tissues. [9] [10] [11] [12]

Clinical significance

Behavioral

Inactivation of the Avpr1b gene in mice (knockout) produces mice with greatly reduced aggression and a reduced ability to recognize recently investigated mice. [13] Defensive behaviour and predatory behaviours appear normal in these knockout mice, [14] but there is evidence that social motivation or awareness is reduced. [15] The AVPR1B antagonist, SSR149415, has been shown to have anti-aggressive actions in hamsters [16] and anti-depressant- and anxiety (anxiolytic)-like behaviors in rats. [17] A single nucleotide polymorphism (SNP) has been associated with susceptibility to depression in humans. [6]

Metabolic

Various stress-induced elevations of ACTH are blunted in the Avpr1b knockout mouse. [18] [19]

Oncology

AVPR1B is expressed at high levels in ACTH-secreting pituitary adenomas as well as in bronchial carcinoids [20] responsible for the ectopic ACTH syndrome. [21]

Ligands

Nelivaptan (SSR149415) [22] and D-[Leu4-Lys8]-vasopressin [23] are a specific antagonist and agonist for the vasopressin 1b receptor, respectively.

Function

AVPR1B is found in different parts of the body and thus has several influences and regulatory actions. Arginine vasopressin influences several symptoms related to affective disorders including significant memory processes, pain sensitivity, synchronization of biological rhythms and the timing and quality of REM sleep. [6] Studies have shown that AVPR1B deficiencies produce behavioral changes that can be reversed when the peptide is replaced. [6] These effects are expressed through contact with specific plasma membrane receptors. [6] AVPR1B is responsible for fueling the effects of vasopressin on ACTH release. [7] This interaction takes place as Arginine Vasopressin works with corticotropin releasing hormone to stimulate the pituitary gland to secrete ACTH. [6] AVPR1b is then responsible for mediating the stimulatory effect of vasopressin on ACTH release. Several G proteins are also involved in the signal transduction pathways linked with AVPR1B. [5] These relationships depend on the level of receptor expression and concentration of vasopressin. [5] For example, AVPR1B causes secretion of ACTH from the anterior pituitary cells in a dose-dependent relationship by activating protein kinase C via the Gq/11 protein. [5]

Application

There have been several experiments which have studied these interactions further and revealed AVPR1B's role in psychological disorders and regulatory functions. Haplotypes of AVPR1B are associated with increased protective effects to recurrent major depression. [6] AVPR1B has also been associated with higher cortisol responses to psychosocial stress in children with psychiatric disorders compared with carriers of glucocorticoid receptor gene. [24] AVPR1b has also shown involvement in regulation of brain water content and cerebral edema. [25] This was revealed as increased levels of AVPR1B mRNA on the choroid plexus were discovered as a result of increased plasma osmolality. [25] The increase after a reduction of brain water content from salt water loading indicated AVPR1B's role in the neuroendocrine feedback loop in maintaining normal central nervous system fluid balance. [25]

Related Research Articles

<span class="mw-page-title-main">Hypothalamic–pituitary–adrenal axis</span> Set of physiological feedback interactions

The hypothalamic–pituitary–adrenal axis is a complex set of direct influences and feedback interactions among three components: the hypothalamus, the pituitary gland, and the adrenal glands. These organs and their interactions constitute the HPA axis.

<span class="mw-page-title-main">Vasopressin</span> Mammalian hormone released from the pituitary gland

Human vasopressin, also called antidiuretic hormone (ADH), arginine vasopressin (AVP) or argipressin, is a hormone synthesized from the AVP gene as a peptide prohormone in neurons in the hypothalamus, and is converted to AVP. It then travels down the axon terminating in the posterior pituitary, and is released from vesicles into the circulation in response to extracellular fluid hypertonicity (hyperosmolality). AVP has two primary functions. First, it increases the amount of solute-free water reabsorbed back into the circulation from the filtrate in the kidney tubules of the nephrons. Second, AVP constricts arterioles, which increases peripheral vascular resistance and raises arterial blood pressure.

<span class="mw-page-title-main">Oxytocin</span> Peptide hormone and neuropeptide

Oxytocin is a peptide hormone and neuropeptide normally produced in the hypothalamus and released by the posterior pituitary. It plays a role in social bonding, reproduction, childbirth, and the period after childbirth. Oxytocin is released into the bloodstream as a hormone in response to sexual activity and during labour. It is also available in pharmaceutical form. In either form, oxytocin stimulates uterine contractions to speed up the process of childbirth. In its natural form, it also plays a role in bonding with the baby and milk production. Production and secretion of oxytocin is controlled by a positive feedback mechanism, where its initial release stimulates production and release of further oxytocin. For example, when oxytocin is released during a contraction of the uterus at the start of childbirth, this stimulates production and release of more oxytocin and an increase in the intensity and frequency of contractions. This process compounds in intensity and frequency and continues until the triggering activity ceases. A similar process takes place during lactation and during sexual activity.

<span class="mw-page-title-main">Paraventricular nucleus of hypothalamus</span>

The paraventricular nucleus is a nucleus in the hypothalamus. Anatomically, it is adjacent to the third ventricle and many of its neurons project to the posterior pituitary. These projecting neurons secrete oxytocin and a smaller amount of vasopressin, otherwise the nucleus also secretes corticotropin-releasing hormone (CRH) and thyrotropin-releasing hormone (TRH). CRH and TRH are secreted into the hypophyseal portal system and act on different targets neurons in the anterior pituitary. PVN is thought to mediate many diverse functions through these different hormones, including osmoregulation, appetite, and the response of the body to stress.

Corticotropes are basophilic cells in the anterior pituitary that produce pro-opiomelanocortin (POMC) which undergoes cleavage to adrenocorticotropin (ACTH), β-lipotropin (β-LPH), and melanocyte-stimulating hormone (MSH). These cells are stimulated by corticotropin releasing hormone (CRH) and make up 15–20% of the cells in the anterior pituitary. The release of ACTH from the corticotropic cells is controlled by CRH, which is formed in the cell bodies of parvocellular neurosecretory cells within the paraventricular nucleus of the hypothalamus and passes to the corticotropes in the anterior pituitary via the hypophyseal portal system. Adrenocorticotropin hormone stimulates the adrenal cortex to release glucocorticoids and plays an important role in the stress response.

Dynorphins (Dyn) are a class of opioid peptides that arise from the precursor protein prodynorphin. When prodynorphin is cleaved during processing by proprotein convertase 2 (PC2), multiple active peptides are released: dynorphin A, dynorphin B, and α/β-neo-endorphin. Depolarization of a neuron containing prodynorphin stimulates PC2 processing, which occurs within synaptic vesicles in the presynaptic terminal. Occasionally, prodynorphin is not fully processed, leading to the release of “big dynorphin.” “Big Dynorphin” is a 32-amino acid molecule consisting of both dynorphin A and dynorphin B.

<span class="mw-page-title-main">Agouti-related peptide</span> Mammalian protein found in Homo sapiens

Agouti-related protein (AgRP), also called agouti-related peptide, is a neuropeptide produced in the brain by the AgRP/NPY neuron. It is synthesized in neuropeptide Y (NPY)-containing cell bodies located in the ventromedial part of the arcuate nucleus in the hypothalamus. AgRP is co-expressed with NPY and acts to increase appetite and decrease metabolism and energy expenditure. It is one of the most potent and long-lasting of appetite stimulators. In humans, the agouti-related peptide is encoded by the AGRP gene.

<span class="mw-page-title-main">Vasopressin receptor 1A</span> Protein-coding gene in the species Homo sapiens

Vasopressin receptor 1A (V1AR), or arginine vasopressin receptor 1A is one of the three major receptor types for vasopressin, and is present throughout the brain, as well as in the periphery in the liver, kidney, and vasculature.

<span class="mw-page-title-main">Vasopressin receptor 2</span> Protein-coding gene in the species Homo sapiens

Vasopressin receptor 2 (V2R), or arginine vasopressin receptor 2, is a protein that acts as receptor for vasopressin. AVPR2 belongs to the subfamily of G-protein-coupled receptors. Its activity is mediated by the Gs type of G proteins, which stimulate adenylate cyclase.

The actions of vasopressin are mediated by stimulation of tissue-specific G protein-coupled receptors (GPCRs) called vasopressin receptors that are classified into the V1 (V1A), V2, and V3 (V1B) receptor subtypes. These three subtypes differ in localization, function and signal transduction mechanisms.

<span class="mw-page-title-main">Vasotocin</span> Chemical compound

Vasotocin is an oligopeptide homologous to oxytocin and vasopressin found in all non-mammalian vertebrates and possibly in mammals during the fetal stage of development. Arginine vasotocin (AVT), a hormone produced by neurosecretory cells within the posterior pituitary gland (neurohypophysis) of the brain, is a major endocrine regulator of water balance and osmotic homoeostasis and is involved in social and sexual behavior in non-mammalian vertebrates. In mammals, it appears to have biological properties similar to those of oxytocin and vasopressin. It has been found to have effects on the regulation of REM sleep. Evidence for the existence of endogenous vasotocin in mammals is limited and no mammalian gene encoding vasotocin has been confirmed.

<span class="mw-page-title-main">Oxytocin receptor</span> Genes on human chromosome 3

The oxytocin receptor, also known as OXTR, is a protein which functions as receptor for the hormone and neurotransmitter oxytocin. In humans, the oxytocin receptor is encoded by the OXTR gene which has been localized to human chromosome 3p25.

<span class="mw-page-title-main">Neurophysin II</span>

Neurophysin II is a carrier protein with a size of 19,687.3 Da and is made up of a dimer of two virtually identical chains of amino acids. Neurophysin II is a cleavage product of the AVP gene. It is a neurohypophysial hormone that is transported in vesicles with vasopressin, the other cleavage product, along axons, from magnocellular neurons of the hypothalamus to the posterior lobe of the pituitary. Although it is stored in neurosecretory granules with vasopressin and released with vasopressin into the bloodstream, its biological action is unclear. Neurophysin II is also known as a stimulator of prolactin secretion.

<span class="mw-page-title-main">GPER</span> Protein-coding gene in the species Homo sapiens

G protein-coupled estrogen receptor 1 (GPER), also known as G protein-coupled receptor 30 (GPR30), is a protein that in humans is encoded by the GPER gene. GPER binds to and is activated by the female sex hormone estradiol and is responsible for some of the rapid effects that estradiol has on cells.

<span class="mw-page-title-main">Nelivaptan</span>

Nelivaptan (INN) is a selective, orally active, non-peptide vasopressin receptor antagonist selective for the V1B subtype. The drug had entered clinical trials for treatment of anxiety and depression. In July 2008, Sanofi-Aventis announced that further development of this drug had been halted.

The Bruce effect, or pregnancy block, is the tendency for female rodents to terminate their pregnancies following exposure to the scent of an unfamiliar male. The effect was first noted in 1959 by Hilda M. Bruce, and has primarily been studied in laboratory mice. In mice, pregnancy can only be terminated prior to embryo implantation, but other species will interrupt even a late-term pregnancy.

<span class="mw-page-title-main">Neurohypophysial hormone</span>

The neurohypophysial hormones form a family of structurally and functionally related peptide hormones. Their representatives in humans are oxytocin and vasopressin. They are named after the location of their release into the blood, the neurohypophysis.

<span class="mw-page-title-main">Phenypressin</span> Chemical compound

Phenypressin (Phe2-Arg8-vasopressin) is an oxytocin neuropeptide belonging to the vertebrae vasopressin family and has similar pharmacological properties as arginine vasopressin. The name phenypressin came about because there is a substitution of phenylalanine that makes it different from arginine vasopressin in the second residue and that is the only difference. It belongs to the family, neurohypophysial hormones, named after the fact that they are secreted by the neurohypophysis which is a neural projection from the hypothalamus. It has mostly been found to be present is some species belonging to the family, Macropodidae, particularly eastern gray kangaroos[3], red kangaroos, tammar wallaby, and the quokka wallaby. In other marsupial families, Phenypressin has not yet specifically been identified, but they do have other vasopressin-like peptides present.

The biology of trust is the study of physiological mechanisms involved in mediating trust in social attachments. It has been studied in terms of genetics, endocrinology and neurobiology.

<span class="mw-page-title-main">AVP gene</span> Gene

Arginine Vasopressin (AVP) Gene is a gene whose product is proteolytically cleaved to produce vasopressin, neurophysin II, and a glycoprotein called copeptin. AVP and other AVP-like peptides are found in mammals, as well as mollusks, arthropods, nematodes, and other invertebrate species. In humans, AVP is present on chromosome 20 and plays a role in homeostatic regulation. The products of AVP have many functions that include vasoconstriction, regulating the balance of water in the body, and regulating responses to stress. Expression of AVP is regulated by the Transcription Translation Feedback Loop (TTFL), which is an important part of the circadian system that controls the expression of clock genes. AVP has important implications in the medical field as its products have significant roles throughout body.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000198049 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000026432 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 3 4 Holmes CL, Landry DW, Granton JT (December 2003). "Science review: Vasopressin and the cardiovascular system part 1--receptor physiology". Critical Care. 7 (6): 427–34. doi:10.1186/cc2337. PMC   374366 . PMID   14624682.
  6. 1 2 3 4 5 6 7 van West D, Del-Favero J, Aulchenko Y, Oswald P, Souery D, Forsgren T, Sluijs S, Bel-Kacem S, Adolfsson R, Mendlewicz J, Van Duijn C, Deboutte D, Van Broeckhoven C, Claes S (March 2004). "A major SNP haplotype of the arginine vasopressin 1B receptor protects against recurrent major depression". Molecular Psychiatry. 9 (3): 287–92. doi: 10.1038/sj.mp.4001420 . PMID   15094789.
  7. 1 2 "anti-Arginine Vasopressin Receptor 1B (AVPR1B) antibody (ABIN122463)". antibodies-online.
  8. Antoni FA, Holmes MC, Makara GB, Kárteszi M, László FA (1984). "Evidence that the effects of arginine-8-vasopressin (AVP) on pituitary corticotropin (ACTH) release are mediated by a novel type of receptor". Peptides. 5 (3): 519–22. doi:10.1016/0196-9781(84)90080-9. PMID   6089144. S2CID   3843868.
  9. Hernando F, Schoots O, Lolait SJ, Burbach JP (2001). "Immunohistochemical localization of the vasopressin V1b receptor in the rat brain and pituitary gland: anatomical support for its involvement in the central effects of vasopressin". Endocrinology. 142 (4): 1659–68. doi: 10.1210/endo.142.4.8067 . PMID   11250948.
  10. Young WS, Li J, Wersinger SR, Palkovits M (2006). "The Vasopressin 1b Receptor is Prominent in the Hippocampal Area CA2 Where It Is Unaffected by Restraint Stress or Adrenalectomy". Neuroscience. 143 (4): 1031–9. doi:10.1016/j.neuroscience.2006.08.040. PMC   1748954 . PMID   17027167.
  11. Lolait SJ, O'Carroll AM, Mahan LC, Felder CC, Button DC, Young WS, Mezey E, Brownstein MJ (July 1995). "Extrapituitary expression of the rat V1b vasopressin receptor gene". Proceedings of the National Academy of Sciences of the United States of America. 92 (15): 6783–7. doi: 10.1073/pnas.92.15.6783 . PMC   41413 . PMID   7624319.
  12. Lolait SJ, Roper JA, Hazell GG, Li Y, Thomson FJ, O'Carroll AM (2016). "10: Neuropeptide receptors". In Murphy E, Gainer H (eds.). Molecular Neuroendocrinology: From Genome to Physiology. Wiley-Blackwell. pp. 195–218. doi:10.1002/9781118760369.ch10. ISBN   9781118760369.
  13. Wersinger SR, Ginns EI, O'Carroll AM, Lolait SJ, Young WS (2002). "AVPR1B knockout reduces aggressive behavior in male mice". Mol. Psychiatry. 7 (9): 975–84. doi: 10.1038/sj.mp.4001195 . PMID   12399951.
  14. Wersinger SR, Caldwell HK, Christiansen M, Young WS (2007). "Disruption of the Vasopressin 1b Receptor Gene Impairs the Attack Component of Aggressive Behavior in Mice". Genes, Brain and Behavior . 6 (7): 653–60. doi:10.1111/j.1601-183X.2006.00294.x. PMC   2486432 . PMID   17284170.
  15. Wersinger SR, Kelliher KR, Zufall F, Lolait SJ, O'Carroll AM, Young WS (2004). "Social motivation is reduced in vasopressin 1b receptor null mice despite normal performance in an olfactory discrimination task". Hormones and Behavior. 46 (5): 638–45. doi:10.1016/j.yhbeh.2004.07.004. PMID   15555506. S2CID   38444963.
  16. Blanchard RJ, Griebel G, Farrokhi C, Markham C, Yang M, Blanchard DC (2005). "AVP V1b selective antagonist SSR149415 blocks aggressive behaviors in hamsters". Pharmacology Biochemistry and Behavior. 80 (1): 189–94. doi:10.1016/j.pbb.2004.10.024. PMID   15652395. S2CID   236345.
  17. Serradeil-Le Gal C, Wagnon J, Tonnerre B, Roux R, Garcia G, Griebel G, Aulombard A (2005). "An overview of SSR149415, a selective nonpeptide vasopressin V1b receptor antagonist for the treatment of stress-related disorders". CNS Drug Reviews. 11 (1): 53–68. doi:10.1111/j.1527-3458.2005.tb00035.x. PMC   6741711 . PMID   15867952.
  18. Lolait SJ, Stewart LQ, Jessop DS, Young WS, O'Carroll AM (2007). "The Hypothalamic-Pituitary-Adrenal Axis Response to Stress in Mice Lacking Functional Vasopressin V1b Receptors". Endocrinology. 148 (2): 849–56. doi:10.1210/en.2006-1309. PMC   2040022 . PMID   17122081.
  19. Roper J, O'Carroll AM, Young W, Lolait S (January 2011). "The vasopressin Avpr1b receptor: molecular and pharmacological studies". Stress. 14 (1): 98–115. doi:10.3109/10253890.2010.512376. PMC   3016603 . PMID   20828336.
  20. Arlt W, Dahia PL, Callies F, Nordmeyer JP, Allolio B, Grossman AB, Reincke M (1997). "Ectopic ACTH production by a bronchial carcinoid tumour responsive to desmopressin in vivo and in vitro". Clinical Endocrinology. 47 (5): 623–7. doi:10.1046/j.1365-2265.1997.3091129.x. PMID   9425403. S2CID   7833666.
  21. de Keyzer Y, Lenne F, Auzan C, Jégou S, René P, Vaudry H, Kuhn JM, Luton JP, Clauser E, Bertagna X (1996). "The pituitary V3 vasopressin receptor and the corticotroph phenotype in ectopic ACTH syndrome". Journal of Clinical Investigation. 97 (5): 1311–8. doi:10.1172/JCI118547. PMC   507185 . PMID   8636444.
  22. Serradeil-Le Gal C, Wagnon J, Simiand J, Griebel G, Lacour C, Guillon G, Barberis C, Brossard G, Soubrié P, Nisato D, Pascal M, Pruss R, Scatton B, Maffrand JP, Le Fur G (2002). "Characterization of (2S,4R)-1-[5-chloro-1-[(2,4-dimethoxyphenyl)sulfonyl]-3-(2-methoxy-phenyl)-2-oxo-2,3-dihydro-1H-indol-3-yl]-4-hydroxy-N,N-dimethyl-2-pyrrolidine carboxamide (SSR149415), a selective and orally active vasopressin V1b receptor antagonist". Journal of Pharmacology and Experimental Therapeutics. 300 (3): 1122–30. doi:10.1124/jpet.300.3.1122. PMID   11861823. S2CID   15987154.
  23. Pena A, Murat B, Trueba M, Ventura MA, Bertrand G, Cheng LL, Stoev S, Szeto HH, Wo N, Brossard G, Serradeil-Le Gal C, Manning M, Guillon G (2007). "Pharmacological and physiological characterization of d[Leu4, Lys8]vasopressin, the first V1b-selective agonist for rat vasopressin/oxytocin receptors". Endocrinology. 148 (9): 4136–46. doi: 10.1210/en.2006-1633 . PMID   17495006.
  24. van West D, Del-Favero J, Deboutte D, Van Broeckhoven C, Claes S (August 2010). "Associations between common arginine vasopressin 1b receptor and glucocorticoid receptor gene variants and HPA axis responses to psychosocial stress in a child psychiatric population". Psychiatry Research. 179 (1): 64–8. doi:10.1016/j.psychres.2009.04.002. PMID   20472303. S2CID   25578813.
  25. 1 2 3 Zemo DA, McCabe JT (2001). "Salt-loading increases vasopressin and vasopressin 1b receptor mRNA in the hypothalamus and choroid plexus". Neuropeptides. 35 (3–4): 181–8. doi:10.1054/npep.2001.0864. PMID   11884209. S2CID   9507417.