Undertow (water waves)

Last updated
A sketch of the undertow (below the wave troughs) and the shore-directed wave-induced mass transport (above the troughs) in a vertical cross-section across (a part of) the surf zone. Sketch from: Buhr Hansen & Svendsen (1984); MWS = mean water surface. Buhr Hansen and Svendsen ICCE 1984 Fig 1.png
A sketch of the undertow (below the wave troughs) and the shore-directed wave-induced mass transport (above the troughs) in a vertical cross-section across (a part of) the surf zone. Sketch from: Buhr Hansen & Svendsen (1984); MWS = mean water surface.

In physical oceanography, undertow is the undercurrent that moves offshore while waves approach the shore. Undertow is a natural and universal feature for almost any large body of water; it is a return flow compensating for the onshore-directed average transport of water by the waves in the zone above the wave troughs. The undertow's flow velocities are generally strongest in the surf zone, where the water is shallow and the waves are high due to shoaling. [1]

Contents

In popular usage, the word undertow is often misapplied to rip currents. [2] An undertow occurs everywhere underneath shore-approaching waves, whereas rip currents are localized narrow offshore currents occurring at certain locations along the coast. [3]

Oceanography

An "undertow" is a steady, offshore-directed compensation flow, which occurs below waves near the shore. Physically, nearshore, the wave-induced mass flux between wave crest and trough is onshore directed. This mass transport is localized in the upper part of the water column, i.e. above the wave troughs. To compensate for the amount of water being transported towards the shore, a second-order (i.e. proportional to the wave height squared), offshore-directed mean current takes place in the lower section of the water column. This flow – the undertow – affects the nearshore waves everywhere, unlike rip currents localized at certain positions along the shore. [4]

The term undertow is used in scientific coastal oceanography papers. [5] [6] [7] The distribution of flow velocities in the undertow over the water column is important as it strongly influences the on- or offshore transport of sediment. Outside the surf zone there is a near-bed onshore-directed sediment transport induced by Stokes drift and skewed-asymmetric wave transport. In the surf zone, strong undertow generates a near-bed offshore sediment transport. These antagonistic flows may lead to sand bar formation where the flows converge near the wave breaking point, or in the wave breaking zone. [5] [6] [7] [8]

Mean flow-velocity vectors in the undertow under plunging waves, as measured in a laboratory wave flume - by Okayasu, Shibayama & Mimura (1986). Below the wave trough, the mean velocities are directed offshore. The beach slope is 1:20; note that the vertical scale is distorted relative to the horizontal scale. Okayasu Shibayama Mimura ICCE 1986 Fig 8.png
Mean flow-velocity vectors in the undertow under plunging waves, as measured in a laboratory wave flume – by Okayasu, Shibayama & Mimura (1986). Below the wave trough, the mean velocities are directed offshore. The beach slope is 1:20; note that the vertical scale is distorted relative to the horizontal scale.

Seaward mass flux

An exact relation for the mass flux of a nonlinear periodic wave on an inviscid fluid layer was established by Levi-Civita in 1924. [9] In a frame of reference according to Stokes' first definition of wave celerity, the mass flux of the wave is related to the wave's kinetic energy density (integrated over depth and thereafter averaged over wavelength) and phase speed through:

Similarly, Longuet Higgins showed in 1975 that – for the common situation of zero mass flux towards the shore (i.e. Stokes' second definition of wave celerity) – normal-incident periodic waves produce a depth- and time-averaged undertow velocity: [10]

with the mean water depth and the fluid density. The positive flow direction of is in the wave propagation direction.

For small-amplitude waves, there is equipartition of kinetic () and potential energy ():

with the total energy density of the wave, integrated over depth and averaged over horizontal space. Since in general the potential energy is much easier to measure than the kinetic energy, the wave energy is approximately (with the wave height). So

For irregular waves the required wave height is the root-mean-square wave height with the standard deviation of the free-surface elevation. [11] The potential energy is and

The distribution of the undertow velocity over the water depth is a topic of ongoing research. [5] [6] [7]

Confusion with rip currents

In contrast to undertow, rip currents are responsible for the great majority of drownings close to beaches. When a swimmer enters a rip current, it starts to carry them offshore. The swimmer can exit the rip current by swimming at right angles to the flow, parallel to the shore, or by simply treading water or floating until the rip releases them. However, drowning can occur when swimmers exhaust themselves by trying unsuccessfully to swim directly against the flow of a rip.

On the United States Lifesaving Association website, it is noted that some uses of the word "undertow" are incorrect:

A rip current is a horizontal current. Rip currents do not pull people under the water—they pull people away from shore. Drowning deaths occur when people pulled offshore are unable to keep themselves afloat and swim to shore. This may be due to any combination of fear, panic, exhaustion, or lack of swimming skills. In some regions, rip currents are referred to by other, incorrect terms such as "rip tides" and "undertow". We encourage exclusive use of the correct term—rip currents. Use of other terms may confuse people and negatively impact public education efforts. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Deposition (geology)</span> Geological process in which sediments, soil and rocks are added to a landform or landmass

Deposition is the geological process in which sediments, soil and rocks are added to a landform or landmass. Wind, ice, water, and gravity transport previously weathered surface material, which, at the loss of enough kinetic energy in the fluid, is deposited, building up layers of sediment.

A continuity equation or transport equation is an equation that describes the transport of some quantity. It is particularly simple and powerful when applied to a conserved quantity, but it can be generalized to apply to any extensive quantity. Since mass, energy, momentum, electric charge and other natural quantities are conserved under their respective appropriate conditions, a variety of physical phenomena may be described using continuity equations.

<span class="mw-page-title-main">Capillary wave</span> Wave on the surface of a fluid, dominated by surface tension

A capillary wave is a wave traveling along the phase boundary of a fluid, whose dynamics and phase velocity are dominated by the effects of surface tension.

<span class="mw-page-title-main">Wind wave</span> Surface waves generated by wind on open water

In fluid dynamics, a wind wave, or wind-generated water wave, is a surface wave that occurs on the free surface of bodies of water as a result of the wind blowing over the water's surface. The contact distance in the direction of the wind is known as the fetch. Waves in the oceans can travel thousands of kilometers before reaching land. Wind waves on Earth range in size from small ripples to waves over 30 m (100 ft) high, being limited by wind speed, duration, fetch, and water depth.

<span class="mw-page-title-main">Wave power</span> Transport of energy by wind waves, and the capture of that energy to do useful work

Wave power is the capture of energy of wind waves to do useful work – for example, electricity generation, water desalination, or pumping water. A machine that exploits wave power is a wave energy converter (WEC).

<span class="mw-page-title-main">Internal wave</span> Type of gravity waves that oscillate within a fluid medium

Internal waves are gravity waves that oscillate within a fluid medium, rather than on its surface. To exist, the fluid must be stratified: the density must change with depth/height due to changes, for example, in temperature and/or salinity. If the density changes over a small vertical distance, the waves propagate horizontally like surface waves, but do so at slower speeds as determined by the density difference of the fluid below and above the interface. If the density changes continuously, the waves can propagate vertically as well as horizontally through the fluid.

<span class="mw-page-title-main">Weber number</span> Dimensionless number in fluid mechanics

The Weber number (We) is a dimensionless number in fluid mechanics that is often useful in analysing fluid flows where there is an interface between two different fluids, especially for multiphase flows with strongly curved surfaces. It is named after Moritz Weber (1871–1951). It can be thought of as a measure of the relative importance of the fluid's inertia compared to its surface tension. The quantity is useful in analyzing thin film flows and the formation of droplets and bubbles.

<span class="mw-page-title-main">Swash</span> A turbulent layer of water that washes up on the beach after an incoming wave has broken

Swash, or forewash in geography, is a turbulent layer of water that washes up on the beach after an incoming wave has broken. The swash action can move beach materials up and down the beach, which results in the cross-shore sediment exchange. The time-scale of swash motion varies from seconds to minutes depending on the type of beach. Greater swash generally occurs on flatter beaches. The swash motion plays the primary role in the formation of morphological features and their changes in the swash zone. The swash action also plays an important role as one of the instantaneous processes in wider coastal morphodynamics.

In the study of heat transfer, critical heat flux (CHF) is the heat flux at which boiling ceases to be an effective form of transferring heat from a solid surface to a liquid.

<span class="mw-page-title-main">Lattice Boltzmann methods</span> Class of computational fluid dynamics methods

The lattice Boltzmann methods (LBM), originated from the lattice gas automata (LGA) method (Hardy-Pomeau-Pazzis and Frisch-Hasslacher-Pomeau models), is a class of computational fluid dynamics (CFD) methods for fluid simulation. Instead of solving the Navier–Stokes equations directly, a fluid density on a lattice is simulated with streaming and collision (relaxation) processes. The method is versatile as the model fluid can straightforwardly be made to mimic common fluid behaviour like vapour/liquid coexistence, and so fluid systems such as liquid droplets can be simulated. Also, fluids in complex environments such as porous media can be straightforwardly simulated, whereas with complex boundaries other CFD methods can be hard to work with.

<span class="mw-page-title-main">Shallow water equations</span> Set of partial differential equations that describe the flow below a pressure surface in a fluid

The shallow-water equations (SWE) are a set of hyperbolic partial differential equations that describe the flow below a pressure surface in a fluid. The shallow-water equations in unidirectional form are also called (de) Saint-Venant equations, after Adhémar Jean Claude Barré de Saint-Venant.

<span class="mw-page-title-main">Langmuir circulation</span> Series of shallow, slow, counter-rotating vortices at the oceans surface aligned with the wind

In physical oceanography, Langmuir circulation consists of a series of shallow, slow, counter-rotating vortices at the ocean's surface aligned with the wind. These circulations are developed when wind blows steadily over the sea surface. Irving Langmuir discovered this phenomenon after observing windrows of seaweed in the Sargasso Sea in 1927. Langmuir circulations circulate within the mixed layer; however, it is not yet so clear how strongly they can cause mixing at the base of the mixed layer.

In physical oceanography and fluid dynamics, the wind stress is the shear stress exerted by the wind on the surface of large bodies of water – such as oceans, seas, estuaries and lakes. When wind is blowing over a water surface, the wind applies a wind force on the water surface. The wind stress is the component of this wind force that is parallel to the surface per unit area. Also, the wind stress can be described as the flux of horizontal momentum applied by the wind on the water surface. The wind stress causes a deformation of the water body whereby wind waves are generated. Also, the wind stress drives ocean currents and is therefore an important driver of the large-scale ocean circulation. The wind stress is affected by the wind speed, the shape of the wind waves and the atmospheric stratification. It is one of the components of the air–sea interaction, with others being the atmospheric pressure on the water surface, as well as the exchange of energy and mass between the water and the atmosphere.

In fluid dynamics, Airy wave theory gives a linearised description of the propagation of gravity waves on the surface of a homogeneous fluid layer. The theory assumes that the fluid layer has a uniform mean depth, and that the fluid flow is inviscid, incompressible and irrotational. This theory was first published, in correct form, by George Biddell Airy in the 19th century.

<span class="mw-page-title-main">Radiation stress</span> Term in physical oceanography

In fluid dynamics, the radiation stress is the depth-integrated – and thereafter phase-averaged – excess momentum flux caused by the presence of the surface gravity waves, which is exerted on the mean flow. The radiation stresses behave as a second-order tensor.

In fluid dynamics, wave setup is the increase in mean water level due to the presence of breaking waves. Similarly, wave setdown is a wave-induced decrease of the mean water level before the waves break. For short, the whole phenomenon is often denoted as wave setup, including both increase and decrease of mean elevation. This setup is primarily present in and near the coastal surf zone. Besides a spatial variation in the (mean) wave setup, also a variation in time may be present – known as surf beat – causing infragravity wave radiation.

In physics, the first law of thermodynamics is an expression of the conservation of total energy of a system. The increase of the energy of a system is equal to the sum of work done on the system and the heat added to that system:

The nonlinearity of surface gravity waves refers to their deviations from a sinusoidal shape. In the fields of physical oceanography and coastal engineering, the two categories of nonlinearity are skewness and asymmetry. Wave skewness and asymmetry occur when waves encounter an opposing current or a shallow area. As waves shoal in the nearshore zone, in addition to their wavelength and height changing, their asymmetry and skewness also change. Wave skewness and asymmetry are often implicated in ocean engineering and coastal engineering for the modelling of random sea states, in particular regarding the distribution of wave height, wavelength and crest length. For practical engineering purposes, it is important to know the probability of these wave characteristics in seas and oceans at a given place and time. This knowledge is crucial for the prediction of extreme waves, which are a danger for ships and offshore structures. Satellite altimeter Envisat RA-2 data shows geographically coherent skewness fields in the ocean and from the data has been concluded that large values of skewness occur primarily in regions of large significant wave height.

In physical oceanography and fluid mechanics, the Miles-Phillips mechanism describes the generation of wind waves from a flat sea surface by two distinct mechanisms. Wind blowing over the surface generates tiny wavelets. These wavelets develop over time and become ocean surface waves by absorbing the energy transferred from the wind. The Miles-Phillips mechanism is a physical interpretation of these wind-generated surface waves.
Both mechanisms are applied to gravity-capillary waves and have in common that waves are generated by a resonance phenomenon. The Miles mechanism is based on the hypothesis that waves arise as an instability of the sea-atmosphere system. The Phillips mechanism assumes that turbulent eddies in the atmospheric boundary layer induce pressure fluctuations at the sea surface. The Phillips mechanism is generally assumed to be important in the first stages of wave growth, whereas the Miles mechanism is important in later stages where the wave growth becomes exponential in time.

In fluid dynamics, the general equation of heat transfer is a nonlinear partial differential equation describing specific entropy production in a Newtonian fluid subject to thermal conduction and viscous forces:

References

Notes

  1. Svendsen, I. A. (1984). "Mass flux and undertow in a surf zone". Coastal Engineering Journal . 8 (4): 347–365. doi:10.1016/0378-3839(84)90030-9.
  2. 1 2 United States Lifesaving Association Rip Current Survival Guide, United States Lifesaving Association, archived from the original on 2014-01-02, retrieved 2014-01-02
  3. MacMahan, J. H.; Thornton, E. B.; Reniers, A. J. H. M. (2006). "Rip current review". Coastal Engineering Journal . 53 (2): 191–208. doi:10.1016/j.coastaleng.2005.10.009. hdl: 10945/45734 . S2CID   14128900.
  4. Lentz, S.J.; Fewings, M.; Howd, P.; Fredericks, J.; Hathaway, K. (2008), "Observations and a Model of Undertow over the Inner Continental Shelf", Journal of Physical Oceanography, 38 (11): 2341–2357, Bibcode:2008JPO....38.2341L, doi:10.1175/2008JPO3986.1, hdl: 1912/4067
  5. 1 2 3 Garcez Faria, A.F.; Thornton, E.B.; Lippman, T.C.; Stanton, T.P. (2000), "Undertow over a barred beach", Journal of Geophysical Research, 105 (C7): 16, 999–17, 010, Bibcode:2000JGR...10516999F, doi: 10.1029/2000JC900084
  6. 1 2 3 Haines, J.W.; Sallenger Jr., A.H. (1994), "Vertical structure of mean cross-shore currents across a barred surf zone", Journal of Geophysical Research, 99 (C7): 14, 223–14, 242, Bibcode:1994JGR....9914223H, doi:10.1029/94JC00427
  7. 1 2 3 Reniers, A.J.H.M.; Thornton, E.B.; Stanton, T.P.; Roelvink, J.A. (2004), "Vertical flow structure during Sandy Duck: Observations and modeling", Coastal Engineering, 51 (3): 237–260, doi:10.1016/j.coastaleng.2004.02.001
  8. Longuet-Higgins, M.S. (1983), "Wave set-up, percolation and undertow in the surf zone", Proceedings of the Royal Society of London A, 390 (1799): 283–291, Bibcode:1983RSPSA.390..283L, doi:10.1098/rspa.1983.0132, S2CID   109502295
  9. Levi-Civita, T. (1924), Questioni di meccanica classica e relativista, Bologna: N. Zanichelli, OCLC   441220095, archived from the original on 2015-06-15
  10. Longuet-Higgins, M.S. (1975), "Integral properties of periodic gravity waves of finite amplitude", Proceedings of the Royal Society of London A, 342 (1629): 157–174, Bibcode:1975RSPSA.342..157L, doi:10.1098/rspa.1975.0018, S2CID   123723040
  11. Battjes, J.A.; Stive, M.J.F. (1985), "Calibration and verification of a dissipation model for random breaking waves", Journal of Geophysical Research, 90 (C5): 9159–9167, Bibcode:1985JGR....90.9159B, doi:10.1029/JC090iC05p09159

Other