Köppen climate classification

Last updated

The Köppen climate classification divides climates into five main climate groups, with each group being divided based on patterns of seasonal precipitation and temperature. The five main groups are A (tropical), B (arid), C (temperate), D (continental), and E (polar). Each group and subgroup is represented by a letter. All climates are assigned a main group (the first letter). All climates except for those in the E group are assigned a seasonal precipitation subgroup (the second letter). For example, Af indicates a tropical rainforest climate. The system assigns a temperature subgroup for all groups other than those in the A group, indicated by the third letter for climates in B, C, D, and the second letter for climates in E. For example, Cfb indicates an oceanic climate with warm summers as indicated by the ending b. Climates are classified based on specific criteria unique to each climate type. [1]

Contents

It is one of the most widely used climate classification systems. It was first published by German-Russian climatologist Wladimir Köppen (1846–1940) in 1884, [2] [3] with several later modifications by Köppen, notably in 1918 and 1936. [4] [5] Later, German climatologist Rudolf Geiger (1894–1981) introduced some changes to the classification system in 1954 and 1961, which is thus sometimes called the Köppen–Geiger climate classification. [6] [7]

As Köppen designed the system based on his experience as a botanist, his main climate groups are based on the types of vegetation occurring in a given climate classification region. In addition to identifying climates, the system can be used to analyze ecosystem conditions and identify the main types of vegetation within climates. Due to its association with the plant life of a given region, the system is useful in predicting future changes of plant life within that region. [8]

The Köppen climate classification system was modified further within the Trewartha climate classification system in 1966 (revised in 1980). The Trewartha system sought to create a more refined middle latitude climate zone, which was one of the criticisms of the Köppen system (the climate group C was too general). [9] :200–1

Koppen-Geiger climate map 1991-2020
.mw-parser-output .legend{page-break-inside:avoid;break-inside:avoid-column}.mw-parser-output .legend-color{display:inline-block;min-width:1.25em;height:1.25em;line-height:1.25;margin:1px 0;text-align:center;border:1px solid black;background-color:transparent;color:black}.mw-parser-output .legend-text{}
Af
Am
Aw
As
BWh
BWk
BSh
BSk
Csa
Csb
Csc
Cwa
Cwb
Cwc
Cfa
Cfb
Cfc
Dsa
Dsb
Dsc
Dsd
Dwa
Dwb
Dwc
Dwd
Dfa
Dfb
Dfc
Dfd
ET
EF Koppen-Geiger Map v2 World 1991-2020.svg
Köppen–Geiger climate map 1991–2020
   Af
   Am
   Aw
   As
   BWh
   BWk
   BSh
   BSk
   Csa
   Csb
   Csc
   Cwa
   Cwb
   Cwc
   Cfa
   Cfb
   Cfc
   Dsa
   Dsb
   Dsc
   Dsd
   Dwa
   Dwb
   Dwc
   Dwd
   Dfa
   Dfb
   Dfc
   Dfd
   ET
   EF

Overview

Köppen climate classification scheme symbols description table [8] [1] [10]
1st2nd3rd
A (Tropical)
  • f (Rainforest)
  • m (Monsoon)
  • w (Savanna, dry winter)
  • s (Savanna, dry summer)
B (Dry)
  • W (Arid desert)
  • S (Semi-arid steppe)
  • h (Hot)
  • k (Cold)
C (Temperate)
  • w (Dry winter)
  • f (No dry season)
  • s (Dry summer)
  • a (Hot summer)
  • b (Warm summer)
  • c (Cold summer)
D (Continental)
  • w (Dry winter)
  • f (No dry season)
  • s (Dry summer)
  • a (Hot summer)
  • b (Warm summer)
  • c (Cold summer)
  • d (Very cold winter)
E (Polar)
  • T (Tundra)
  • F (Ice cap)

The Köppen climate classification scheme divides climates into five main climate groups: A (tropical), B (arid), C (temperate), D (continental), and E (polar). [11] The second letter indicates the seasonal precipitation type, while the third letter indicates the level of heat. [12] Summers are defined as the six-month period that is warmer either from April to September and/or October to March, while winter is the six-month period that is cooler. [8] [10]

Group A: Tropical climates

Tropical climates have an average temperature of 18 °C (64.4 °F) or higher every month of the year, with significant precipitation. [8] [10]

Group B: Desert and semi-arid climates

Desert and semi-arid climates are defined by low precipitation in a region that does not fit the polar (EF or ET) criteria of no month with an average temperature greater than 10 °C (50 °F).

The precipitation threshold in millimeters is determined by multiplying the average annual temperature in Celsius by 20, then adding:

  1. 280 if 70% or more of the total precipitation is in the spring and summer months (April–September in the Northern Hemisphere, or October–March in the Southern), or
  2. 140 if 30%–70% of the total precipitation is received during the spring and summer, or
  3. 0 if less than 30% of the total precipitation is received during the spring and summer.

If the annual precipitation is less than 50% of this threshold, the classification is BW (arid: desert climate); if it is in the range of 50%–100% of the threshold, the classification is BS (semi-arid: steppe climate). [8] [10]

A third letter can be included to indicate temperature. Here, h signifies low-latitude climates (average annual temperature above 18 °C (64.4 °F)) while k signifies middle-latitude climates (average annual temperature less than 18 °C). In addition, n is used to denote a climate characterized by frequent fog and H for high altitudes. [13] [14] [15]

Group C: Temperate climates

Temperate climates have the coldest month averaging between 0 °C (32 °F) [10] (or −3 °C (26.6 °F)) [1] and 18 °C (64.4 °F) and at least one month averaging above 10 °C (50 °F). [10] [1] For the distribution of precipitation in locations that both satisfy a dry summer (Cs) and a dry winter (Cw), a location is considered to have a wet summer (Cw) when more precipitation falls within the summer months than the winter months while a location is considered to have a dry summer (Cs) when more precipitation falls within the winter months. [10] This additional criterion applies to locations that satisfies both Ds and Dw as well. [10]

Group D: Continental climates

Continental climates have at least one month averaging below 0 °C (32 °F) (or −3 °C (26.6 °F)) and at least one month averaging above 10 °C (50 °F). [10] [1]

Group E: Polar and alpine climates

Polar and alpine climates has every month of the year with an average temperature below 10 °C (50 °F). [8] [10]

Group A: Tropical/megathermal climates

Tropical climate distribution Koppen-Geiger Map v2 A 1991-2020.svg
Tropical climate distribution

Tropical climates are characterized by constant high temperatures (at sea level and low elevations); all 12 months of the year have average temperatures of 18 °C (64.4 °F) or higher; and generally high annual precipitation. They are subdivided as follows:

Af: Tropical rainforest climate

All 12 months have an average precipitation of at least 60 mm (2.4 in). These climates usually occur within 10° latitude of the equator. This climate has no natural seasons in terms of thermal and moisture changes. [9] When it is dominated most of the year by the doldrums low-pressure system due to the presence of the Intertropical Convergence Zone (ITCZ) and when there are no cyclones then the climate is qualified as equatorial. When the trade winds dominate most of the year, the climate is a tropical trade-wind rainforest climate. [16]

Examples

Some of the places with this climate are indeed uniformly and monotonously wet throughout the year (e.g., the northwest Pacific coast of South and Central America, from Ecuador to Costa Rica; see, for instance, Andagoya, Colombia), but in many cases, the period of higher sun and longer days is distinctly wettest (as at Palembang, Indonesia) or the time of lower sun and shorter days may have more rain (as at Sitiawan, Malaysia). Among these places, some have a pure equatorial climate (Balikpapan, Kuala Lumpur, Kuching, Lae, Medan, Paramaribo, Pontianak, and Singapore) with the dominant ITCZ aerological mechanism and no cyclones or a subequatorial climate with occasional hurricanes (Davao, Ratnapura, Victoria).

(Note. The term aseasonal refers to the lack in the tropical zone of large differences in daylight hours and mean monthly (or daily) temperature throughout the year. Annual cyclic changes occur in the tropics, but not as predictably as those in the temperate zone, albeit unrelated to temperature, but to water availability whether as rain, mist, soil, or groundwater. Plant response (e.g., phenology), animal (feeding, migration, reproduction, etc.), and human activities (plant sowing, harvesting, hunting, fishing, etc.) are tuned to this 'seasonality'. Indeed, in tropical South America and Central America, the 'rainy season' (and the 'high water season') is called invierno (Spanish) or inverno (Portuguese), though it could occur in the Northern Hemisphere summer; likewise, the 'dry season (and 'low water season') is called verano or verão, and can occur in the Northern Hemisphere winter).

Am: Tropical monsoon climate

This type of climate results from the monsoon winds which change direction according to the seasons. This climate has a driest month (which nearly always occurs at or soon after the "winter" solstice for that side of the equator) with rainfall less than 60 mm (2.4 in), but at least of average monthly precipitation. [9] :208

Examples

Aw/As: Tropical savanna climate

Aw: Tropical savanna climate with dry winters

Aw climates have a pronounced dry season, with the driest month having precipitation less than 60 mm (2.4 in) and less than of average monthly precipitation. [9] :208–211

Examples

Most places that have this climate are found at the outer margins of the tropical zone from the low teens to the mid-20s latitudes, but occasionally an inner-tropical location (e.g., San Marcos, Antioquia, Colombia) also qualifies. The Caribbean coast, eastward from the Gulf of Urabá on the ColombiaPanamá border to the Orinoco River delta, on the Atlantic Ocean (about 4,000  km), have long dry periods (the extreme is the BWh climate (see below), characterized by very low, unreliable precipitation, present, for instance, in extensive areas in the Guajira, and Coro, western Venezuela, the northernmost peninsulas in South America, which receive <300  mm total annual precipitation, practically all in two or three months).

This condition extends to the Lesser Antilles and Greater Antilles forming the circum-Caribbean dry belt. The length and severity of the dry season diminish inland (southward); at the latitude of the Amazon River—which flows eastward, just south of the equatorial line—the climate is Af. East from the Andes, between the dry, arid Caribbean and the ever-wet Amazon are the Orinoco River's Llanos or savannas, from where this climate takes its name.

As: Tropical savanna climate with dry-summers

Sometimes As is used in place of Aw if the dry season occurs during the time of higher sun and longer days (during summer). [1] [24] This is the case in parts of Hawaii, northwestern Dominican Republic, East Africa, southeast India and northeast Sri Lanka, and the Brazilian Northeastern Coast. In places that have this climate type, the dry season occurs during the time of lower sun and shorter days generally because of rain shadow effects during the 'high-sun' part of the year.

Examples

Group B: Arid (desert and semi-arid) climates

Arid climate distribution Koppen-Geiger Map v2 B 1991-2020.svg
Arid climate distribution

These climates are characterized by the amount of annual precipitation less than a threshold value that approximates the potential evapotranspiration. [9] :212 The threshold value (in millimeters) is calculated as follows:

Multiply the average annual temperature in °C by 20, then add

  1. 280 if 70% or more of the total precipitation is in the high-sun half of the year (April through September in the Northern Hemisphere, or October through March in the Southern), or
  2. 140 if 30%–70% of the total precipitation is received during the applicable period, or
  3. 0 if less than 30% of the total precipitation is so received.

According to the modified Köppen classification system used by modern climatologists, total precipitation in the warmest six months of the year is taken as a reference instead of the total precipitation in the high-sun half of the year. [25]

If the annual precipitation is less than 50% of this threshold, the classification is BW (arid: desert climate); if it is in the range of 50%–100% of the threshold, the classification is BS (semi-arid: steppe climate).

A third letter can be included to indicate temperature. Here, h signifies low-latitude climate (average annual temperature above 18 °C) while k signified middle-latitude climate (average annual temperature below 18 °C).

Desert areas situated along the west coasts of continents at tropical or near-tropical locations characterized by frequent fog and low clouds, although these places rank among the driest on earth in terms of actual precipitation received, can be labeled BWn with the n denoting a climate characterized by frequent fog. [13] [14] [15] An equivalent BSn category can be found in foggy coastal steppes. [26]

BW: Arid climates

BWh: Hot deserts

BWk: Cold deserts

BS: Semi-arid (steppe) climates

BSh: Hot semi-arid

BSk: Cold semi-arid

Group C: Temperate/mesothermal climates

Temperate climate distribution Koppen-Geiger Map v2 C 1991-2020.svg
Temperate climate distribution

In the Köppen climate system, temperate climates are defined as having an average temperature above 0 °C (32 °F) (or −3 °C (26.6 °F), as noted previously) in their coldest month but below 18 °C (64.4 °F). The average temperature of −3 °C (26.6 °F) roughly coincides with the equatorward limit of frozen ground and snow cover lasting for a month or more.

The second letter indicates the precipitation pattern—w indicates dry winters (driest winter month average precipitation less than one-tenth wettest summer month average precipitation). s indicates at least three times as much rain in the wettest month of winter as in the driest month of summer. f means significant precipitation in all seasons (neither above-mentioned set of conditions fulfilled). [8]

The third letter indicates the degree of summer heat—a indicates warmest month average temperature above 22 °C (71.6 °F) while b indicates warmest month averaging below 22 °C but with at least four months averaging above 10 °C (50.0 °F), and c indicates one to three months averaging above 10 °C (50.0 °F). [8] [10] [1]

Cs: Mediterranean-type climates

Csa: Hot-summer Mediterranean climates

These climates usually occur on the western sides of continents between the latitudes of 30° and 45°. [39] These climates are in the polar front region in winter, and thus have moderate temperatures and changeable, rainy weather. Summers are hot and dry, due to the domination of the subtropical high-pressure systems, except in the immediate coastal areas, where summers are milder due to the nearby presence of cold ocean currents that may bring fog but prevent rain. [9] :221–223

Examples

Csb: Warm-summer Mediterranean climates

Dry-summer climates sometimes extend to additional areas where the warmest month average temperatures do not reach 22 °C (71.6 °F), most often in the 40s latitudes. These climates are classified as Csb. [8]

Examples

Csc: Cold-summer Mediterranean climates

Cold summer Mediterranean climates (Csc) exist in high-elevation areas adjacent to coastal Csb climate areas, where the strong maritime influence prevents the average winter monthly temperature from dropping below 0 °C. This climate is rare and is predominantly found in climate fringes and isolated areas of the Cascades and Andes Mountains, as the dry-summer climate extends further poleward in the Americas than elsewhere. [9] Rare instances of this climate can be found in some coastal locations in the North Atlantic and at high altitudes in Hawaii.

Examples

Cfa: Humid subtropical climates

These climates usually occur on the eastern coasts and eastern sides of continents, usually in the high 20s and 30s latitudes. Unlike the dry summer Mediterranean climates, humid subtropical climates have a warm and wet flow from the tropics that creates warm and moist conditions in the summer months. As such, summer (not winter as is the case in Mediterranean climates) is often the wettest season.

The flow out of the subtropical highs and the summer monsoon creates a southerly flow from the tropics that brings warm and moist air to the lower east sides of continents. This flow is often what brings the frequent and strong but short-lived summer thundershowers so typical of the more southerly subtropical climates like the southeast United States, southern China, and Japan. [9] :223–226

Examples

Cfb: Oceanic climates

Marine west coast climate

Cfb climates usually occur in the higher middle latitudes on the western sides of continents; they are typically situated immediately poleward of the Mediterranean climates in the 40s and 50s latitudes. However, in southeast Australia, southeast South America, and extreme southern Africa this climate is found immediately poleward of temperate climates, on places near the coast and at a somewhat lower latitude. In western Europe, this climate occurs in coastal areas up to 68°N in Norway.

These climates are dominated all year round by the polar front, leading to changeable, often overcast weather. Summers are mild due to cool ocean currents. Winters are milder than other climates in similar latitudes, but usually very cloudy, and frequently wet. Cfb climates are also encountered at high elevations in certain subtropical and tropical areas, where the climate would be that of a subtropical/tropical rainforest if not for the altitude. These climates are called "highlands". [9] :226–229

Examples

Subtropical highland climate with uniform rainfall

Subtropical highland climates with uniform rainfall (Cfb) are a type of oceanic climate mainly found in the highlands of Australia, such as in or around the Great Dividing Range in the north of the state of New South Wales, and also sparsely in other continents, such as in South America, among others. Unlike a typical Cwb climate, they tend to have rainfall spread evenly throughout the year. They have characteristics of both the Cfb and Cfa climates, but unlike these climates, they have a high diurnal temperature variation and low humidity, owing to their inland location and relatively high elevation.

Examples

Cfc: Subpolar oceanic climate

Subpolar oceanic climates (Cfc) occur poleward of or at higher elevations than the maritime temperate climates and are mostly confined either to narrow coastal strips on the western poleward margins of the continents, or, especially in the Northern Hemisphere, to islands off such coasts. They occur in both hemispheres, generally in the high 50s and 60s latitudes in the Northern Hemisphere and the 50s latitudes in the Southern Hemisphere. [9]

Examples

Cw: Dry-winter subtropical climates

Cwa: Dry-winter humid subtropical climate

Cwa is a monsoonal influenced version of the humid subtropical climate, having the classic dry winter–wet summer pattern associated with tropical monsoonal climates. They are found at similar latitudes as the Cfa climates, except in regions where monsoons are more prevalent. These regions are in the Southern Cone of South America, the Gangetic Plain of South Asia, southeastern Africa, and parts of East Asia and Mexico.

Examples

Cwb: Dry-winter subtropical highland climate

Dry-winter subtropical highland climate (Cwb) is a type of climate mainly found in highlands inside the tropics of Central America, South America, Africa, and South and Southeast Asia or areas in the subtropics. Winters are noticeable and dry, and summers can be very rainy. In the tropics, the monsoon is provoked by the tropical air masses and the dry winters by subtropical high pressure.

Examples

Cwc: Dry-winter cold subtropical highland climate

Dry-winter cold subtropical highland climates (Cwc) exist in high-elevation areas adjacent to Cwb climates. This climate is rare and is found mainly in isolated locations mostly in the Andes in Bolivia and Peru, as well as in sparse mountain locations in Southeast Asia.

Group D: Continental/microthermal climates

Continental climate distribution Koppen-Geiger Map v2 D 1991-2020.svg
Continental climate distribution

These climates have an average temperature above 10 °C (50 °F) in their warmest months, and the coldest month average below 0 °C (or −3 °C (26.6 °F), as noted previously). These usually occur in the interiors of continents and on their upper east coasts, normally north of 40°N. In the Southern Hemisphere, group D climates are extremely rare due to the smaller land masses in the middle latitudes and the almost complete absence of land at 40–60°S, existing only in some highland locations.

Dfa/Dwa/Dsa: Hot summer humid continental climates

Dfa climates usually occur in the high 30s and low 40s latitudes, with a qualifying average temperature in the warmest month of greater than 22 °C (72 °F). In Europe, these climates tend to be much drier than in North America. Dsa exists at higher elevations adjacent to areas with hot summer Mediterranean (Csa) climates. [9] :231–32

These climates exist only in the Northern Hemisphere because the Southern Hemisphere has no large landmasses isolated from the moderating effects of the sea within the middle latitudes.

Examples

In eastern Asia, Dwa climates extend further south into the mid-30s latitudes due to the influence of the Siberian high-pressure system, which also causes winters there to be dry, and summers can be very wet because of monsoon circulation.

Examples

Dsa exists only at higher elevations adjacent to areas with hot summer Mediterranean (Csa) climates.

Examples

Dfb/Dwb/Dsb: Warm summer humid continental/hemiboreal climates

Dfb climates are immediately poleward of hot summer continental climates, generally in the high 40s and low 50s latitudes in North America and Asia, and also extending to higher latitudes into the high 50s and low 60s latitudes in central and eastern Europe, between the maritime temperate and continental subarctic climates. [9]

Examples

Like with all Group D climates, Dwb climates mostly only occur in the northern hemisphere.

Examples

Dsb arises from the same scenario as Dsa, but at even higher altitudes or latitudes, and chiefly in North America, since the Mediterranean climates extend further poleward than in Eurasia.

Examples

Dfc/Dwc/Dsc: Subarctic/boreal climates

Dfc, Dsc and Dwc climates occur poleward of the other group D climates, or at higher altitudes, generally in the 50s and 60s latitudes. [9] :232–235

Examples:

Dfd/Dwd/Dsd: Subarctic/boreal climates with severe winters

Places with this climate have severe winters, with the temperature in their coldest month lower than −38 °C. These climates occur only in eastern Siberia, and are the second coldest, before EF. The coldest recorded temperatures in the Northern Hemisphere belonged to this climate. The names of some of the places with this climate have become veritable synonyms for the extreme, severe winter cold. [67]

Examples

Group E: Polar climates

Polar climate distribution Koppen-Geiger Map v2 E 1991-2020.svg
Polar climate distribution

In the Köppen climate system, polar climates are defined as the warmest temperature of any month being below 10 °C (50 °F). Polar climates are further divided into two types, tundra climates and icecap climates:

ET: Tundra climate

Tundra climate (ET): warmest month has an average temperature between 0 and 10 °C. These climates occur on the northern edges of the North American and Eurasian land masses (generally north of 70 °N although they may be found farther south depending on local conditions), and on nearby islands. ET climates are also found on some islands near the Antarctic Convergence, and at high elevations outside the polar regions, above the tree line.

Examples

EF: Ice cap climate

Ice cap climate (EF): this climate is dominant in Antarctica, inner Greenland, and summits of many high mountains, even at lower latitudes. Monthly average temperatures never exceed 0 °C (32 °F).

Examples

Ecological significance

Biomass

The Köppen climate classification is based on the empirical relationship between climate and vegetation. This classification provides an efficient way to describe climatic conditions defined by temperature and precipitation and their seasonality with a single metric. Because climatic conditions identified by the Köppen classification are ecologically relevant, it has been widely used to map the geographic distribution of long-term climate and associated ecosystem conditions. [73]

Climate change

Over recent years, there has been an increasing interest in using the classification to identify changes in climate and potential changes in vegetation over time. [12] The most important ecological significance of the Köppen climate classification is that it helps to predict the dominant vegetation type based on the climatic data and vice versa. [74]

In 2015, a Nanjing University paper published in Scientific Reports analyzing climate classifications found that between 1950 and 2010, approximately 5.7% of all land area worldwide had moved from wetter and colder classifications to drier and hotter classifications. The authors also found that the change "cannot be explained as natural variations but are driven by anthropogenic factors". [75]

A 2018 study provides detailed maps for present and future Köppen-Geiger climate classification maps at 1-km resolution. [76]

Other Köppen climate maps

All maps use the ≥0 °C definition for the temperate-continental border. [8]

See also

Related Research Articles

<span class="mw-page-title-main">Desert climate</span> Arid climate subtype in the Köppen climate classification system with very little precipitation

The desert climate or arid climate is a dry climate sub-type in which there is a severe excess of evaporation over precipitation. The typically bald, rocky, or sandy surfaces in desert climates are dry and hold little moisture, quickly evaporating the already little rainfall they receive. Covering 14.2% of Earth's land area, hot deserts are the second-most common type of climate on Earth after the Polar climate.

<span class="mw-page-title-main">Temperate broadleaf and mixed forests</span> Biome

Temperate broadleaf and mixed forest is a temperate climate terrestrial habitat type defined by the World Wide Fund for Nature, with broadleaf tree ecoregions, and with conifer and broadleaf tree mixed coniferous forest ecoregions.

<span class="mw-page-title-main">Continental climate</span> Köppen climate category

Continental climates often have a significant annual variation in temperature. They tend to occur in central and eastern parts of the three northern-tier continents, typically in the middle latitudes, often within large landmasses, where prevailing winds blow overland bringing some precipitation, and temperatures are not moderated by oceans. Continental climates occur mostly in the Northern Hemisphere due to the large landmasses found there. Most of northeastern China, eastern and southeastern Europe, much of Russia south of the Arctic Circle, central and southeastern Canada, and the central and northeastern United States have this type of climate. Continentality is a measure of the degree to which a region experiences this type of climate.

<span class="mw-page-title-main">Mediterranean climate</span> Type of climate

A Mediterranean climate, also called a dry summer climate, described by Köppen as Cs, is a temperate climate type that occurs in the lower mid-latitudes. Such climates typically have dry summers and wet winters, with summer conditions being hot and winter conditions typically being mild. These weather conditions are typically experienced in the majority of Mediterranean-climate regions and countries, but remain highly dependent on proximity to the ocean, altitude and geographical location.

<span class="mw-page-title-main">Subtropics</span> Geographic and climate zone

The subtropical zones or subtropics are geographical and climate zones immediately to the north and south of the tropics. Geographically part of the temperate zones of both hemispheres, they cover the middle latitudes from 23°26′09.8″ (or 23.43605°) to approximately 35° north and south. The horse latitudes lie within this range.

<span class="mw-page-title-main">Humid continental climate</span> Category in the Köppen climate classification system

A humid continental climate is a climatic region defined by Russo-German climatologist Wladimir Köppen in 1900, typified by four distinct seasons and large seasonal temperature differences, with warm to hot summers, and cold and snowy winters. Precipitation is usually distributed throughout the year, but often these regions do have dry seasons. The definition of this climate in terms of temperature is as follows: the mean temperature of the coldest month must be below 0 °C (32.0 °F) or −3 °C (26.6 °F) depending on the isotherm, and there must be at least four months whose mean temperatures are at or above 10 °C (50 °F). In addition, the location in question must not be semi-arid or arid. The cooler Dfb, Dwb, and Dsb subtypes are also known as hemiboreal climates. Although amount of snowfall is not a factor used in defining the humid continental climate, snow during the winter in this type of climate is almost a guarantee, either intermittently throughout the winter months near the poleward or coastal margins, or persistently throughout the winter months elsewhere in the climate zone.

<span class="mw-page-title-main">Climate of Peru</span>

Climate of Peru describes the diverse climates of this large South American country with an area of 1,285,216 km2 (496,225 sq mi). Peru is located entirely in the tropics but features desert and mountain climates as well as tropical rainforests. Elevations above sea level in the country range from −37 to 6,778 m and precipitation ranges from less than 20 mm (0.79 in) annually to more than 8,000 mm (310 in). There are three main climatic regions: the Pacific Ocean coast is one of the driest deserts in the world but with some unique features; the high Andes mountains have a variety of microclimates depending on elevation and exposure and with temperatures and precipitation from temperate to polar and wet to dry; and the Amazon basin has tropical climates, mostly with abundant precipitation, along with sub-tropical climates in elevations above 1,550 m (5,090 ft).

<span class="mw-page-title-main">Beulah, Colorado</span> Unincorporated community in Pueblo County, Colorado, United States

Beulah is an unincorporated community and a post office located within the Beulah Valley census-designated place in Pueblo County, Colorado, United States. The Beulah Post Office has the ZIP code 81023. Beulah is a part of the Beulah Valley CDP. Beulah lies along State Highway 78 about 21 miles southwest of Pueblo, in the foothills of the Wet Mountains.

<span class="mw-page-title-main">Tropical savanna climate</span> Climate subtype

Tropical savanna climate or tropical wet and dry climate is a tropical climate sub-type that corresponds to the Köppen climate classification categories Aw and As. The driest month has less than 60 mm (2.4 in) of precipitation and also less than mm of precipitation.

<span class="mw-page-title-main">Climate of Russia</span>

The climate of Russia is formed under the influence of several determining factors. The enormous size of the country and the remoteness of many areas from the sea result in the dominance of the continental climate, which is prevalent in European and Asian Russia except for the tundra and the extreme southwest. Mountains in the south obstructing the flow of warm air masses from the Indian Ocean and the plain of the west and north makes the country open to Arctic and Atlantic influences. Russia's climate, despite its enormous geographical extent, is generally warm to hot in the summer and cold to very cold in the winter, with snow cover typically present over the vast majority of the country's territory in the winter months, with the exception of the country's southernmost territories, the North Caucasus. Russia's far northeast, subject to an extreme subarctic climate, experiences the coldest winters of any permanently settled region in the world, with Yakutsk, the capital of the Sakha Republic, being the world's coldest major city and Oymyakon, also in the Sakha Republic, being the world's coldest permanently inhabited settlement.

<span class="mw-page-title-main">Climate of Mexico</span>

The climate of Mexico is very diverse. The Tropic of Cancer effectively divides the country into temperate and tropical zones. Land that is north of the twenty-fourth parallel experiences lower temperatures during the winter months. South of the twenty-fourth parallel, temperatures are fairly consistent all year round and vary solely as a function of elevation. The north of the country usually receives less precipitation than the south.

<span class="mw-page-title-main">Climate of Norway</span>

The climate of Norway is more temperate than could be expected for such high latitudes. This is mainly due to the North Atlantic Current with its extension, the Norwegian Current, raising the air temperature; the prevailing southwesterlies bringing mild air onshore; and the general southwest–northeast orientation of the coast, which allows the westerlies to penetrate into the Arctic. The January average in Brønnøysund is 15.8C (28.6F) higher than the January average in Nome, Alaska, even though both towns are situated on the west coast of the continents at 65°N. In July the difference is reduced to 3.2C (5.8F). The January average of Yakutsk, in Siberia but slightly further south, is 42.3C (76.1F) lower than in Brønnøysund.

<span class="mw-page-title-main">Climate of Venezuela</span>

The Climate of Venezuela is characterized for being tropical and megathermal as a result of its geographical location near the Equator, but because of the topography and the dominant wind direction, several climatic types occur which can be the same as found in temperate latitudes, and even polar regions. Latitude exerts little influence on the Venezuelan climate. While the coastal cities of Maracaibo, Barcelona, Porlamar and Maiquetia can get extremely hot, cities in valleys such as Mérida, Caracas, Los Teques and San Cristobal have cooler climates, and the highest towns of Mucuchies and Apartaderos have cold (tundra) climates.

<span class="mw-page-title-main">Humid subtropical climate</span> Transitional climatic zone

A humid subtropical climate is a temperate climate type characterized by hot and humid summers, and cool to mild winters. These climates normally lie on the southeast side of all continents, generally between latitudes 25° and 40° and are located poleward from adjacent tropical climates, and equatorward from either humid continental or oceanic climates. It is also known as warm temperate climate in some climate classifications.

<span class="mw-page-title-main">Climate categories in viticulture</span>

In viticulture, the climates of wine regions are categorised based on the overall characteristics of the area's climate during the growing season. While variations in macroclimate are acknowledged, the climates of most wine regions are categorised as being part of a Mediterranean, maritime or continental climate. The majority of the world's premium wine production takes place in one of these three climate categories in locations between the 30th parallel and 50th parallel in both the northern and southern hemisphere. While viticulture does exist in some tropical climates, most notably Brazil, the amount of quality wine production in those areas is so small that the climate effect has not been as extensively studied as other categories.

<span class="mw-page-title-main">Climate of Turkey</span>

Turkey's climate is varied and generally temperate, with the regions bordering the Mediterranean and Black Sea heavily affected by the coasts, and the interior being drier and more continental.

<span class="mw-page-title-main">Climate of Spain</span>

The climate of Spain is highly diverse and varies considerably across the country's various regions. In fact, Spain is sometimes described as the most climatically diverse country in Europe and has 13 different Köppen, climates.

Muddy Mountain is a peak in the Laramie Mountains approximately 12 miles (19 km) south-south-east of Casper, Wyoming. There is a two-mile (3.2 km) "interpretive nature trail" maintained by the Bureau of Land Management, as well as a series of trails popular with mountain bikers, horseback riders, and ATVs in the summer, and snowmobiles in the winter.

Vegetation classification is the process of classifying and mapping the vegetation over an area of the Earth's surface. Vegetation classification is often performed by state based agencies as part of land use, resource and environmental management. Many different methods of vegetation classification have been used. In general, there has been a shift from structural classification used by forestry for the mapping of timber resources, to floristic community mapping for biodiversity management. Whereas older forestry-based schemes considered factors such as height, species and density of the woody canopy, floristic community mapping shifts the emphasis onto ecological factors such as climate, soil type and floristic associations. Classification mapping is usually now done using geographic information systems (GIS) software.

<span class="mw-page-title-main">Highland temperate climate</span>

The highland temperate climates are a temperate climate sub-type, although located in tropical zone, isothermal and with characteristics different from others temperate climates like oceanic or mediterranean where they are often are included without proper differentiation.

References

  1. 1 2 3 4 5 6 7 Kottek, Markus; Grieser, Jürgen; Beck, Christoph; Rudolf, Bruno; Rubel, Franz (2006). "World Map of the Köppen-Geiger climate classification updated" (PDF). Meteorologische Zeitschrift. 15 (3): 259–263. Bibcode:2006MetZe..15..259K. doi:10.1127/0941-2948/2006/0130.
  2. Köppen, Wladimir (1884). "Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der Wärme auf die organische Welt betrachtet" [The thermal zones of the earth according to the duration of hot, moderate and cold periods and to the impact of heat on the organic world)]. Meteorologische Zeitschrift. 20 (3). Translated by Volken, E.; Brönnimann, S (published 2011): 351–360. Bibcode:2011MetZe..20..351K. doi:10.1127/0941-2948/2011/105. S2CID   209855204. Archived from the original on 8 September 2016. Retrieved 2 September 2016.
  3. Rubel, F.; Kottek, M (2011). "Comments on: 'The thermal zones of the Earth' by Wladimir Köppen (1884)". Meteorologische Zeitschrift. 20 (3): 361–365. Bibcode:2011MetZe..20..361R. doi:10.1127/0941-2948/2011/0285.
  4. Köppen, Wladimir (1918). "Klassification der Klimate nach Temperatur, Niederschlag and Jahreslauf". Petermanns Geographische Mitteilungen. Vol. 64. pp. 193–203, 243–248 via koeppen-geiger.Vu-Wien.ac.at/Koeppen.htm.
  5. Köppen, Wladimir (1936). "C". In Köppen, Wladimir; Geiger (publisher), Rudolf (eds.). Das geographische System der Klimate [The geographic system of climates](PDF). Vol. 1. Berlin: Borntraeger. Archived (PDF) from the original on 4 March 2016. Retrieved 2 September 2016.
  6. Geiger, Rudolf (1954). "Klassifikation der Klimate nach W. Köppen" [Classification of climates after W. Köppen]. Landolt-Börnstein – Zahlenwerte und Funktionen aus Physik, Chemie, Astronomie, Geophysik und Technik, alte Serie. Vol. 3. Berlin: Springer. pp. 603–607.
  7. Geiger, Rudolf (1961). Überarbeitete Neuausgabe von Geiger, R.: Köppen-Geiger / Klima der Erde. (Wandkarte 1:16 Mill.) – Klett-Perthes, Gotha.
  8. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Beck, Hylke E.; Zimmermann, Niklaus E.; McVicar, Tim R.; Vergopolan, Noemi; Berg, Alexis; Wood, Eric F. (30 October 2018). "Present and future Köppen-Geiger climate classification maps at 1-km resolution". Scientific Data. 5: 180214. Bibcode:2018NatSD...580214B. doi:10.1038/sdata.2018.214. ISSN   2052-4463. PMC   6207062 . PMID   30375988.
  9. 1 2 3 4 5 6 7 8 9 10 11 12 13 McKnight, Tom L; Hess, Darrel (2000). "Climate Zones and Types" . Physical Geography: A Landscape Appreciation . Upper Saddle River, NJ: Prentice Hall. ISBN   978-0-13-020263-5.
  10. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Peel, M. C.; Finlayson, B. L. & McMahon, T. A. (2007). "Updated world map of the Köppen–Geiger climate classification" (PDF). Hydrology and Earth System Sciences. 11 (5): 1633–1644. Bibcode:2007HESS...11.1633P. doi: 10.5194/Hess-11-1633-2007 . ISSN   1027-5606.
  11. "Koppen climate classification | climatology". Encyclopædia Britannica. Archived from the original on 4 August 2017. Retrieved 4 August 2017.
  12. 1 2 Chen, Hans; Chen, Deliang. "Köppen climate classification". hanschen.org. Archived from the original on 14 August 2017. Retrieved 4 August 2017.
  13. 1 2 Cereceda, P.; Larrain, H.; osses, P.; Farias, M.; Egaña, I. (2008). "The climate of the coast and fog zone in the Tarapacá Region, Atacama Desert, Chile". Atmospheric Research. 87 (3–4): 301–311. Bibcode:2008AtmRe..87..301C. doi:10.1016/j.atmosres.2007.11.011. hdl: 10533/139314 .
  14. 1 2 "Clasificación climática de Köppen" (in Spanish). University of Chile. Archived from the original on 22 January 2018. Retrieved 21 January 2018.
  15. 1 2 Inzunza, Juan. "Capitulo 15. Climas de Chile" (PDF). Meteorología Descriptiva y Aplicaciones en Chile (in Spanish). p. 427. Archived from the original (PDF) on 22 January 2018. Retrieved 22 January 2018.
  16. Estienne, Pierre; Godard, Alain. "Chapitre XVI". Climatologie (in French). Éditions Armand Colin. pp. 308–323. ISBN   2-200-31042-0.
  17. Linacre, Edward; Geerts, Bart (1997). Climates and Weather Explained. London: Routledge. p. 379. ISBN   978-0-415-12519-2.
  18. "Climate Data Book of Bhutan, 2018" (PDF). National Center for Hydrology and Meteorology . Retrieved 13 July 2021.
  19. "Puerto Maldonado Climate Normals 1961–1990". National Oceanic and Atmospheric Administration . Retrieved 23 April 2015.
  20. 1 2 "Experience Template" 中国气象数据网 (in Simplified Chinese). China Meteorological Administration . Retrieved 17 June 2023.
  21. "Estado de Morelos-Estacion: Cuernavaca". Normales Climatologicas 1951–2010 (in Spanish). Servicio Meteorologico Nacional. Archived from the original on 3 March 2016. Retrieved 25 April 2015.
  22. 1 2 "Pure tabular statistics". ArcGIS Experience Builder. China Meteorological Administration. Retrieved 2 August 2023.
  23. "World Meteorological Organization Climate Normals for 1991–2020 — Ziguinchor". National Oceanic and Atmospheric Administration. Retrieved 10 January 2024.
  24. "JetStream Max: Addition Köppen-Geiger Climate Subdivisions". National Weather Service. Archived from the original on 24 December 2018. Retrieved 24 December 2018.
  25. Critchfield, H.J. (1983). "Criteria for classification of major climatic types in modified Köppen system" (4 ed.). University of Idaho. Archived from the original on 30 September 2009.
  26. "Atlas Agroclimático de Chile–Estado Actual y Tendencias del Clima (Tomo I: Regiones de Arica Y Parinacota, Tarapacá y Antofagasta" (in Spanish). Universidad de Chile. 2017. Archived from the original on 22 December 2018. Retrieved 9 December 2018.
  27. "World Weather Information Service". worldweather.wmo.int. WMO. Retrieved 28 July 2023.
  28. 1 2 3 4 5 6 7 "Valores Climatológicos Normales – España 1981–2010". Agencia Estatal de Meteorologia. AEMET. Retrieved 4 January 2024.
  29. 1 2 "Evolución de los climas de Koppen en España: 1951–2020" (PDF). Agencia Estatal de Meteorologia. AEMET. Retrieved 16 February 2024.
  30. КЛИМАТ УЛАН-БАТОРА (in Russian). Pogoda.ru.net. Retrieved 4 January 2015.
  31. "Estado de Nuevo Leon-Estacion: Monterrey". Normales Climatologicas 1951–2010 (in Spanish). Servicio Meteorológico Nacional. Retrieved 16 October 2021.
  32. "World Weather Information Service". worldweather.wmo.int. WMO. Retrieved 27 October 2023.
  33. "Clima en la Argentina: Guia Climática por Santiago del Estero Aero". Caracterización: Estadísticas de largo plazo (in Spanish). Servicio Meteorológico Nacional. Retrieved 5 April 2023.
  34. "Climate Normals for Batna" . Retrieved 11 February 2013.
  35. "Climate data for Bloemfontein". South African Weather Service. Archived from the original on 15 March 2012. Retrieved 7 March 2010.
  36. "Bolivia – Cochabamba". Sistema de Clasificación Bioclimática Mundial. Retrieved 28 January 2014.
  37. "World Weather Information Service". World Weather. WMO. Retrieved 13 November 2023.
  38. "World Meteorological Organization Climate Normals for 1991–2020: Sulina" (CSV). ncei.noaa.gov. NOAA . Retrieved 14 February 2024.
  39. George, Melvin R. "Mediterranean Climate". UCRangelands. University of California. Archived from the original on 4 March 2016. Retrieved 26 January 2015.
  40. "World Weather Information service". World Weather. WMO. Retrieved 13 November 2023.
  41. "FORM 1: STATION ILAM". Iranian Meteorological Organization. Archived from the original on 8 May 2012. Retrieved 18 November 2011.
  42. "Weather Information for Irbid". Jordan Meteorological. Retrieved 27 November 2016.
  43. "World Meteorological Organization Climate Normals for 1991–2020: Bulgaria-Kardzhali" (CSV). NOAA. Retrieved 3 January 2024.
  44. "World Weather Information Service–Tlemcen". World Meteorological Organization. Retrieved 21 October 2016.
  45. "Korçë Climate Normals 1961–1990". National Oceanic and Atmospheric Administration . Retrieved 22 January 2023.
  46. "Global Surface Summary of the Day – GSOD". National Oceanic and Atmospheric Administration . Retrieved 22 January 2023.
  47. "Resmi İstatistikler: İllerimize Ait Mevism Normalleri (1991–2020)" (in Turkish). Turkish State Meteorological Service. Retrieved 1 May 2021.
  48. "World Meteorological Organization Climate Normals for 1991–2020: Ijevan" (CSV). NOAA . Retrieved 6 March 2024.
  49. "Κλιματικά Δεδομένα ανά Πόλη- ΜΕΤΕΩΓΡΑΜΜΑΤΑ, ΕΜΥ, Εθνική Μετεωρολογική Υπηρεσία". emy.gr. Retrieved 17 August 2023.
  50. "Prizren: Monthly and annual means, maximum and minimum values of meteorological elements for the period 1961 – 1990". Republic Hydrometeorological Service of Serbia. Archived from the original on 20 July 2021. Retrieved 3 October 2021.
  51. "Zagatala Climate Normals 1961–1990". National Oceanic and Atmospheric Administration . Retrieved 22 March 2015.
  52. "Resmi İstatistikler: İllerimize Ait Genel İstatistik Verileri" (in Turkish). Turkish State Meteorological Service. Archived from the original on 22 January 2019. Retrieved 11 December 2021.
  53. "World Meteorological Organization Climate Normals for 1991–2020 — Trevico". National Oceanic and Atmospheric Administration. Retrieved 3 February 2024.
  54. "Pure tabular statistics". ArcGIS Experience Builder. China Meteorological Data Service Center. Retrieved 2 August 2023.
  55. "World Meteorological Organization" . Retrieved 7 December 2022.
  56. "Pogoda.ru.net" (in Russian). Retrieved 8 November 2021.
  57. "Климат Благовещенска" (in Russian). Погода и Климат. Retrieved 8 November 2021.
  58. "Chirchiq, Uzbekistan Travel Weather Averages (Weatherbase)". Weatherbase. Retrieved 12 August 2024.
  59. "Faiz abad Climate Normals for 1964–1983". NOAA . Retrieved 7 May 2024.
  60. "Briceni Climate Normals 1991–2020". World Meteorological Organization Climatological Standard Normals (1991–2020). National Oceanic and Atmospheric Administration. Archived from the original on 21 August 2023. Retrieved 21 August 2023.
  61. "World Meteorological Organization Climate Normals for 1981–2010: Dobbiaco-16033" (XLS). ncei.noaa.gov (Excel). National Oceanic and Atmosoheric Administration . Retrieved 28 February 2024.
  62. I.R of Iran Shahrekord Meteorological Organization ( in Persian ).
  63. "World Meteorological Organization Climate Normals for 1991–2020 – Jermuk" (CSV). NCEI . Retrieved 6 March 2024.
  64. "Lysa hora Climate Normals 1991–2020". National Oceanic and Atmospheric Administration. Archived from the original on 28 August 2023. Retrieved 28 August 2023.
  65. "Štrbské Pleso Climate Normals 1991–2020". World Meteorological Organization Climatological Standard Normals (1991–2020). National Oceanic and Atmospheric Administration. Archived from the original on 20 August 2023. Retrieved 20 August 2023.
  66. "Tsetserleg Climate Normals 1961–1990". National Oceanic and Atmospheric Administration . Retrieved 13 January 2013.
  67. "Climate Types: Types of Climate | Climatology". Geography Notes. 9 August 2017. Retrieved 17 June 2022.
  68. "Anexos" (PDF). National Meteorology and Hydrology Service of Peru. Retrieved 2 January 2023.
  69. "Lomnický štít Climate Normals 1991–2020". World Meteorological Organization Climatological Standard Normals (1991–2020). National Oceanic and Atmospheric Administration. Archived from the original on 20 August 2023. Retrieved 20 August 2023.
  70. "Musala Peak Climate Normals 1991–2020". National Oceanic and Atmospheric Administration . Retrieved 29 August 2023.
  71. "Simulated historical climate & weather data for Shimshal". meteoblue.com. Meteoblue. Retrieved 8 September 2024.
  72. "World Meteorological Organization Climate Normals for 1991–2020: Sonnblick". ncei.noaa.gov. NOAA . Retrieved 16 February 2024.
  73. Chen, D.; Chen, H. W. (2013). "Using the Köppen classification to quantify climate variation and change: An example for 1901–2010" (PDF). Environmental Development. 6: 69–79. doi:10.1016/j.envdev.2013.03.007. Archived (PDF) from the original on 31 October 2014. Retrieved 29 October 2014.
  74. Critchfield, Howard J (1983). General Climatology (4th ed.). New Delhi: Prentice Hall. pp. 154–161. ISBN   978-81-203-0476-5.
  75. Chan, D.; Wu, Q. (2015). "Significant anthropogenic-induced changes of climate classes since 1950". Scientific Reports. 5 (13487): 13487. Bibcode:2015NatSR...513487C. doi:10.1038/srep13487. PMC   4551970 . PMID   26316255.
  76. Beck, Hylke E.; Zimmermann, Niklaus E.; McVicar, Tim R.; Vergopolan, Noemi; Berg, Alexis; Wood, Eric F. (30 October 2018). "Present and future Köppen-Geiger climate classification maps at 1-km resolution". Scientific Data. 5 (1): 180214. Bibcode:2018NatSD...580214B. doi:10.1038/sdata.2018.214. ISSN   2052-4463. PMC   6207062 . PMID   30375988. S2CID   53111021.

Climate records