Membrane estrogen receptor

Last updated

Membrane estrogen receptors (mERs) are a group of receptors which bind estrogen. [1] [2] Unlike nuclear estrogen receptors, which mediate their effects via slower genomic mechanisms, mERs are cell surface receptors that rapidly alter cell signaling via modulation of intracellular signaling cascades. [3] [4]

Contents

Nuclear estrogen receptors such as ERα and ERβ become mERs through palmitoylation, a post-translational modification that enhances ER association with caveolin-1 to enable trafficking of ERs to the membrane or membrane caveolae. [5] [6] Other putative mERs include GPER (GPR30), GPRC6A, ER-X, ERx and Gq-mER. [3] [7] [8] [9]

ERa/ERb becoming mERs through trafficking to the membrane by caveolins, following palmitoylation. MER localization.pdf
ERα/ERβ becoming mERs through trafficking to the membrane by caveolins, following palmitoylation.

Structure-function relationship

In mice and humans, ERβ localization in the plasma membrane occurs after palmitoylation on cysteine 418. [10] Dimerization of mERs appears necessary for their function in rapid cell signaling. [11]

Signaling mechanisms

G-protein coupled receptors

Various electrophysiological studies support E2 signaling via GPCRs. [12] [13] [14] mERs are thought to activate G-protein coupled receptors to regulate L-type Ca2+ channels and activate protein kinase A (PKA), protein kinase C (PKC), and mitogen activated protein kinase (MAPK) signaling cascades. [15] [16]

Gq-coupled mERs (Gq-mERs) activation has been demonstrated to rapidly increase membrane excitability various neuronal cell types by desensitizing GABAB receptor coupling to G protein-coupled inwardly rectifying K+ channels (GIRKs). [17] [18] [19]

mGluRs

Localization of mERs in caveolae allows them to be held in close proximity to specific receptors such as mGluRs. [20] Various studies have demonstrated mER's ability to activate mGluR signaling, even in the absence of glutamate. [21] [22] [23] ER/mGluR signaling is thought to be highly relevant for female motivational behavior. Interestingly, modification of caveolin expression appears to alter the nature of ER-mGluR interactions. [24]

Clinical significance

Membrane estrogen receptors have been implicated in reproductive, cardiovascular, neural, and immune function, including cancer, neurodegenerative disease, and cardiovascular disorders. [25] [26]

Cancer

GPER1 pathways modify local inflammation and strengthen cellular immune responses in breast cancer and melanoma, making it a strong prognostic marker. [27] [28] [29]

Neurodegenerative disease

mERs have a demonstrated neuroprotective effect against neurodegenerative disorders like Parkinson's disease, which is thought to underlie the lower incidence of the disorder in women compared to men. [30] [31]

Cardiovascular disorders

mERβ has been demonstrated to mitigate cardiac cell pathology caused by angiotensin II. [10] [32] Activation of mER but not nuclear ER signaling in vascular epithelial cells promotes protection against vascular injury in mice. Striatin, a scaffolding protein that links mERs to membrane caveolae, is necessary for this effect. [33]

Addiction

Propensity to addiction appears to be mediated by sex hormones such as estrogen. [34] In neural reward circuity, nuclear ERs are not commonly expressed, and mERs have been demonstrated to act on mGluR5 to facilitate psychostimulant-induced behavioral and neurochemical effects. [35] [36]

See also

Related Research Articles

<span class="mw-page-title-main">Estrogen</span> Primary female sex hormone

Estrogen is a category of sex hormone responsible for the development and regulation of the female reproductive system and secondary sex characteristics. There are three major endogenous estrogens that have estrogenic hormonal activity: estrone (E1), estradiol (E2), and estriol (E3). Estradiol, an estrane, is the most potent and prevalent. Another estrogen called estetrol (E4) is produced only during pregnancy.

<span class="mw-page-title-main">Estradiol</span> Chemical compound

Estradiol (E2), also spelled oestradiol, is an estrogen steroid hormone and the major female sex hormone. It is involved in the regulation of female reproductive cycles such as estrous and menstrual cycles. Estradiol is responsible for the development of female secondary sexual characteristics such as the breasts, widening of the hips and a female pattern of fat distribution. It is also important in the development and maintenance of female reproductive tissues such as the mammary glands, uterus and vagina during puberty, adulthood and pregnancy. It also has important effects in many other tissues including bone, fat, skin, liver, and the brain.

<span class="mw-page-title-main">Steroid hormone</span> Substance with biological function

A steroid hormone is a steroid that acts as a hormone. Steroid hormones can be grouped into two classes: corticosteroids and sex steroids. Within those two classes are five types according to the receptors to which they bind: glucocorticoids and mineralocorticoids and androgens, estrogens, and progestogens. Vitamin D derivatives are a sixth closely related hormone system with homologous receptors. They have some of the characteristics of true steroids as receptor ligands.

A hormone receptor is a receptor molecule that binds to a specific hormone. Hormone receptors are a wide family of proteins made up of receptors for thyroid and steroid hormones, retinoids and Vitamin D, and a variety of other receptors for various ligands, such as fatty acids and prostaglandins. Hormone receptors are of mainly two classes. Receptors for peptide hormones tend to be cell surface receptors built into the plasma membrane of cells and are thus referred to as trans membrane receptors. An example of this is Actrapid. Receptors for steroid hormones are usually found within the protoplasm and are referred to as intracellular or nuclear receptors, such as testosterone. Upon hormone binding, the receptor can initiate multiple signaling pathways, which ultimately leads to changes in the behavior of the target cells.

Steroid hormone receptors are found in the nucleus, cytosol, and also on the plasma membrane of target cells. They are generally intracellular receptors and initiate signal transduction for steroid hormones which lead to changes in gene expression over a time period of hours to days. The best studied steroid hormone receptors are members of the nuclear receptor subfamily 3 (NR3) that include receptors for estrogen and 3-ketosteroids. In addition to nuclear receptors, several G protein-coupled receptors and ion channels act as cell surface receptors for certain steroid hormones.

<span class="mw-page-title-main">Estrogen receptor</span> Proteins activated by the hormone estrogen

Estrogen receptors (ERs) are a group of proteins found inside cells. They are receptors that are activated by the hormone estrogen (17β-estradiol). Two classes of ER exist: nuclear estrogen receptors, which are members of the nuclear receptor family of intracellular receptors, and membrane estrogen receptors (mERs), which are mostly G protein-coupled receptors. This article refers to the former (ER).

In biology, cell signaling is the process by which a cell interacts with itself, other cells, and the environment. Cell signaling is a fundamental property of all cellular life in prokaryotes and eukaryotes.

<span class="mw-page-title-main">Lipid signaling</span> Biological signaling using lipid molecules

Lipid signaling, broadly defined, refers to any biological cell signaling event involving a lipid messenger that binds a protein target, such as a receptor, kinase or phosphatase, which in turn mediate the effects of these lipids on specific cellular responses. Lipid signaling is thought to be qualitatively different from other classical signaling paradigms because lipids can freely diffuse through membranes. One consequence of this is that lipid messengers cannot be stored in vesicles prior to release and so are often biosynthesized "on demand" at their intended site of action. As such, many lipid signaling molecules cannot circulate freely in solution but, rather, exist bound to special carrier proteins in serum.

<span class="mw-page-title-main">Estrogen receptor alpha</span> Protein-coding gene in the species Homo sapiens

Estrogen receptor alpha (ERα), also known as NR3A1, is one of two main types of estrogen receptor, a nuclear receptor that is activated by the sex hormone estrogen. In humans, ERα is encoded by the gene ESR1.

<span class="mw-page-title-main">Nuclear receptor</span> Protein

In the field of molecular biology, nuclear receptors are a class of proteins responsible for sensing steroids, thyroid hormones, vitamins, and certain other molecules. These intracellular receptors work with other proteins to regulate the expression of specific genes thereby controlling the development, homeostasis, and metabolism of the organism.

<span class="mw-page-title-main">Nuclear receptor coactivator 3</span> Protein-coding gene in the species Homo sapiens

The nuclear receptor coactivator 3 also known as NCOA3 is a protein that, in humans, is encoded by the NCOA3 gene. NCOA3 is also frequently called 'amplified in breast 1' (AIB1), steroid receptor coactivator-3 (SRC-3), or thyroid hormone receptor activator molecule 1 (TRAM-1).

<span class="mw-page-title-main">GPER</span> Protein-coding gene in the species Homo sapiens

G protein-coupled estrogen receptor 1 (GPER), also known as G protein-coupled receptor 30 (GPR30), is a protein that in humans is encoded by the GPER gene. GPER binds to and is activated by the female sex hormone estradiol and is responsible for some of the rapid effects that estradiol has on cells.

<span class="mw-page-title-main">Estrogen receptor beta</span> Protein-coding gene in the species Homo sapiens

Estrogen receptor beta (ERβ) also known as NR3A2 is one of two main types of estrogen receptor—a nuclear receptor which is activated by the sex hormone estrogen. In humans ERβ is encoded by the ESR2 gene.

<span class="mw-page-title-main">COUP-TFI</span> Protein found in humans

COUP-TF1 also known as NR2F1 is a protein that in humans is encoded by the NR2F1 gene. This protein is a member of nuclear hormone receptor family of steroid hormone receptors.

<span class="mw-page-title-main">Estrogen-related receptor alpha</span> Protein-coding gene in the species Homo sapiens

Estrogen-related receptor alpha (ERRα), also known as NR3B1, is a nuclear receptor that in humans is encoded by the ESRRA gene. ERRα was originally cloned by DNA sequence homology to the estrogen receptor alpha, but subsequent ligand binding and reporter-gene transfection experiments demonstrated that estrogens did not regulate ERRα. Currently, ERRα is considered an orphan nuclear receptor.

<span class="mw-page-title-main">SRA1</span> Protein-coding gene in the species Homo sapiens

Steroid receptor RNA activator 1 also known as steroid receptor RNA activator protein (SRAP) is a protein that in humans is encoded by the SRA1 gene. The mRNA transcribed from the SRA1 gene is a component of the ribonucleoprotein complex containing NCOA1. This functional RNA also encodes a protein.

Nuclear receptor coregulators are a class of transcription coregulators that have been shown to be involved in any aspect of signaling by any member of the nuclear receptor superfamily. A comprehensive database of coregulators for nuclear receptors and other transcription factors was previously maintained at the Nuclear Receptor Signaling Atlas website which has since been replaced by the Signaling Pathways Project website.

<span class="mw-page-title-main">Estetrol</span> Chemical compound

Estetrol (E4), or oestetrol, is one of the four natural estrogenic steroid hormones found in humans, along with estrone (E1), estradiol (E2), and estriol (E3). Estetrol is a major estrogen in the body. In contrast to estrone and estradiol, estetrol is a native estrogen of fetal life. Estetrol is produced exclusively by the fetal liver and is found in detectable levels only during pregnancy, with relatively high levels in the fetus and lower levels in the maternal circulation.

Membrane steroid receptors (mSRs), also called extranuclear steroid receptors, are a class of cell surface receptors activated by endogenous steroids that mediate rapid, non-genomic signaling via modulation of intracellular signaling cascades. mSRs are another means besides classical nuclear steroid hormone receptors (SHRs) for steroids to mediate their biological effects. SHRs can produce slow genomic responses or rapid, non-genomic responses in the case of mSRs.

Membrane mineralocorticoid receptors (mMRs) or membrane aldosterone receptors are a group of receptors which bind and are activated by mineralocorticoids such as aldosterone. Unlike the classical nuclear mineralocorticoid receptor (MR), which mediates its effects via genomic mechanisms, mMRs are cell surface receptors which rapidly alter cell signaling via modulation of intracellular signaling cascades. The identities of the mMRs have yet to be fully elucidated, but are thought to include membrane-associated classical MRs as well as yet-to-be-characterized G protein-coupled receptors (GPCRs). Rapid effects of aldosterone were found not be reversed by the MR antagonist spironolactone, indicating additional receptors besides just the classical MR. It has been estimated that as much as 50% of the rapid actions of aldosterone are mediated by mMRs that are not the classical MR, based on findings of insensitivity to classical mR antagonists.

References

  1. Soltysik K, Czekaj P (April 2013). "Membrane estrogen receptors - is it an alternative way of estrogen action?". Journal of Physiology and Pharmacology. 64 (2): 129–142. PMID   23756388.
  2. Micevych PE, Kelly MJ (2012). "Membrane estrogen receptor regulation of hypothalamic function". Neuroendocrinology. 96 (2): 103–110. doi:10.1159/000338400. PMC   3496782 . PMID   22538318.
  3. 1 2 Micevych PE, Mermelstein PG (August 2008). "Membrane estrogen receptors acting through metabotropic glutamate receptors: an emerging mechanism of estrogen action in brain". Molecular Neurobiology. 38 (1): 66–77. doi:10.1007/s12035-008-8034-z. PMC   2663000 . PMID   18670908.
  4. Razandi M, Pedram A, Greene GL, Levin ER (February 1999). "Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcript: studies of ERalpha and ERbeta expressed in Chinese hamster ovary cells". Molecular Endocrinology. 13 (2): 307–319. doi: 10.1210/mend.13.2.0239 . PMID   9973260.
  5. Razandi M, Alton G, Pedram A, Ghonshani S, Webb P, Levin ER (March 2003). "Identification of a structural determinant necessary for the localization and function of estrogen receptor alpha at the plasma membrane". Molecular and Cellular Biology. 23 (5): 1633–1646. doi:10.1128/MCB.23.5.1633-1646.2003. PMC   151696 . PMID   12588983.
  6. Levin ER (December 2009). "Plasma membrane estrogen receptors". Trends in Endocrinology and Metabolism. 20 (10): 477–482. doi:10.1016/j.tem.2009.06.009. PMC   3589572 . PMID   19783454.
  7. Micevych PE, Kelly MJ (2012). "Membrane estrogen receptor regulation of hypothalamic function". Neuroendocrinology. 96 (2): 103–110. doi:10.1159/000338400. PMC   3496782 . PMID   22538318.
  8. Pi M, Parrill AL, Quarles LD (December 2010). "GPRC6A mediates the non-genomic effects of steroids". The Journal of Biological Chemistry. 285 (51): 39953–39964. doi: 10.1074/jbc.M110.158063 . PMC   3000977 . PMID   20947496.
  9. Arnal JF, Lenfant F, Metivier R, Flouriot G, Henrion D, Adlanmerini M, et al. (July 2017). "Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications". Physiological Reviews. 97 (3): 1045–1087. doi:10.1152/physrev.00024.2016. PMID   28539435. S2CID   42396301.
  10. 1 2 Ahluwalia, Amrita; Hoa, Neil; Moreira, Debbie; Aziz, Daniel; Singh, Karanvir; Patel, Khushin N; Levin, Ellis R (2022-12-19). "Membrane Estrogen Receptor β Is Sufficient to Mitigate Cardiac Cell Pathology". Endocrinology. 164 (2). doi: 10.1210/endocr/bqac200 . ISSN   1945-7170. PMID   36461668.
  11. Razandi, Mahnaz; Pedram, Ali; Merchenthaler, Istvan; Greene, Geoffrey L.; Levin, Ellis R. (2004-12-01). "Plasma Membrane Estrogen Receptors Exist and Functions as Dimers". Molecular Endocrinology. 18 (12): 2854–2865. doi: 10.1210/me.2004-0115 . ISSN   0888-8809. PMID   15231873.
  12. Lagrange, Andre H.; Rønnekleiv, Oline K.; Kelly, Martin J. (1997-04-01). "Modulation of G Protein-Coupled Receptors by an Estrogen Receptor that Activates Protein Kinase A". Molecular Pharmacology. 51 (4): 605–612. doi:10.1124/mol.51.4.605. ISSN   0026-895X. PMID   9106625.
  13. Gu, Qin; Moss, Robert L. (February 1998). "Novel mechanism for non‐genomic action of 17β‐oestradiol on kainate‐induced currents in isolated rat CA1 hippocampal neurones". The Journal of Physiology. 506 (3): 745–754. doi:10.1111/j.1469-7793.1998.745bv.x. ISSN   0022-3751. PMC   2230751 . PMID   9503335.
  14. Qiu, Jian; Bosch, Martha A.; Tobias, Sandra C.; Grandy, David K.; Scanlan, Thomas S.; Rønnekleiv, Oline K.; Kelly, Martin J. (2003-10-22). "Rapid Signaling of Estrogen in Hypothalamic Neurons Involves a Novel G-Protein-Coupled Estrogen Receptor that Activates Protein Kinase C". The Journal of Neuroscience. 23 (29): 9529–9540. doi:10.1523/JNEUROSCI.23-29-09529.2003. ISSN   0270-6474. PMC   6740471 . PMID   14573532.
  15. Coleman, Kevin, M. (2001). "Intracellular signaling pathways: nongenomic actions of estrogens and ligand-independent activation of estrogen receptors". Frontiers in Bioscience. 6 (1): D1379-91. doi: 10.2741/Coleman . PMID   11578956.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. Fu, Xiao‐Dong; Simoncini, Tommaso (August 2008). "Extra‐nuclear signaling of estrogen receptors". IUBMB Life. 60 (8): 502–510. doi: 10.1002/iub.80 . ISSN   1521-6543. S2CID   5058096.
  17. Smith, A. W.; Bosch, M. A.; Wagner, E. J.; Rønnekleiv, O. K.; Kelly, M. J. (2013-09-01). "The membrane estrogen receptor ligand STX rapidly enhances GABAergic signaling in NPY/AgRP neurons: role in mediating the anorexigenic effects of 17β-estradiol". American Journal of Physiology-Endocrinology and Metabolism. 305 (5): E632–E640. doi:10.1152/ajpendo.00281.2013. ISSN   0193-1849. PMC   3761166 . PMID   23820624.
  18. Kelly, Martin J.; Qiu, Jian; Wagner, Edward J.; Rønnekleiv, Oline K. (December 2002). "Rapid effects of estrogen on G protein-coupled receptor activation of potassium channels in the central nervous system (CNS)". The Journal of Steroid Biochemistry and Molecular Biology. 83 (1–5): 187–193. doi:10.1016/S0960-0760(02)00249-2. PMID   12650715. S2CID   21184175.
  19. Kelly, Martin J.; Rønnekleiv, Oline K. (September 2009). "Control of CNS neuronal excitability by estrogens via membrane-initiated signaling". Molecular and Cellular Endocrinology. 308 (1–2): 17–25. doi:10.1016/j.mce.2009.03.008. PMC   2701913 . PMID   19549588.
  20. Meitzen, John; Britson, Kyla A.; Tuomela, Krista; Mermelstein, Paul G. (February 2019). "The expression of select genes necessary for membrane-associated estrogen receptor signaling differ by sex in adult rat hippocampus". Steroids. 142: 21–27. doi:10.1016/j.steroids.2017.09.012. PMC   5874170 . PMID   28962849.
  21. Micevych, Paul E.; Mermelstein, Paul G. (August 2008). "Membrane Estrogen Receptors Acting Through Metabotropic Glutamate Receptors: An Emerging Mechanism of Estrogen Action in Brain". Molecular Neurobiology. 38 (1): 66–77. doi:10.1007/s12035-008-8034-z. ISSN   0893-7648. PMC   2663000 . PMID   18670908.
  22. Boulware, Marissa I.; Weick, Jason P.; Becklund, Bryan R.; Kuo, Sidney P.; Groth, Rachel D.; Mermelstein, Paul G. (2005-05-18). "Estradiol Activates Group I and II Metabotropic Glutamate Receptor Signaling, Leading to Opposing Influences on cAMP Response Element-Binding Protein". The Journal of Neuroscience. 25 (20): 5066–5078. doi: 10.1523/JNEUROSCI.1427-05.2005 . ISSN   0270-6474. PMC   6724851 . S2CID   16737794.
  23. Huang, Guang Zhe; Woolley, Catherine S. (June 2012). "Estradiol Acutely Suppresses Inhibition in the Hippocampus through a Sex-Specific Endocannabinoid and mGluR-Dependent Mechanism". Neuron. 74 (5): 801–808. doi:10.1016/j.neuron.2012.03.035. PMC   3372866 . PMID   22681685.
  24. Boulware, Marissa I.; Kordasiewicz, Holly; Mermelstein, Paul G. (2007-09-12). "Caveolin Proteins Are Essential for Distinct Effects of Membrane Estrogen Receptors in Neurons". The Journal of Neuroscience. 27 (37): 9941–9950. doi: 10.1523/JNEUROSCI.1647-07.2007 . ISSN   0270-6474. PMC   6672640 . PMID   17855608. S2CID   17262672.
  25. Deroo, B. J. (2006-03-01). "Estrogen receptors and human disease". Journal of Clinical Investigation. 116 (3): 561–570. doi:10.1172/JCI27987. ISSN   0021-9738. PMC   2373424 . PMID   16511588.
  26. Arnal, Jean-Francois; Lenfant, Françoise; Metivier, Raphaël; Flouriot, Gilles; Henrion, Daniel; Adlanmerini, Marine; Fontaine, Coralie; Gourdy, Pierre; Chambon, Pierre; Katzenellenbogen, Benita; Katzenellenbogen, John (2017-07-01). "Membrane and Nuclear Estrogen Receptor Alpha Actions: From Tissue Specificity to Medical Implications". Physiological Reviews. 97 (3): 1045–1087. doi:10.1152/physrev.00024.2016. ISSN   0031-9333. PMID   28539435. S2CID   42396301.
  27. Arias-Pulido, Hugo; Royce, Melanie; Gong, Yun; Joste, Nancy; Lomo, Lesley; Lee, Sang-Joon; Chaher, Nabila; Verschraegen, Claire; Lara, Juanita; Prossnitz, Eric R.; Cristofanilli, Massimo (August 2010). "GPR30 and estrogen receptor expression: new insights into hormone dependence of inflammatory breast cancer". Breast Cancer Research and Treatment. 123 (1): 51–58. doi:10.1007/s10549-009-0631-7. ISSN   0167-6806. PMC   2904403 . PMID   19902352.
  28. Natale, Christopher A; Li, Jinyang; Zhang, Junqian; Dahal, Ankit; Dentchev, Tzvete; Stanger, Ben Z; Ridky, Todd W (2018-01-16). "Activation of G protein-coupled estrogen receptor signaling inhibits melanoma and improves response to immune checkpoint blockade". eLife. 7. doi: 10.7554/eLife.31770 . ISSN   2050-084X. PMC   5770157 . PMID   29336307.
  29. Levin, Ellis R.; Pietras, Richard J. (April 2008). "Estrogen receptors outside the nucleus in breast cancer". Breast Cancer Research and Treatment. 108 (3): 351–361. doi:10.1007/s10549-007-9618-4. ISSN   0167-6806. PMID   17592774. S2CID   11394158.
  30. Roque, C.; Mendes-Oliveira, J.; Duarte-Chendo, C.; Baltazar, G. (October 2019). "The role of G protein-coupled estrogen receptor 1 on neurological disorders". Frontiers in Neuroendocrinology. 55: 100786. doi:10.1016/j.yfrne.2019.100786. PMID   31513775. S2CID   202043731.
  31. Cerri, Silvia; Mus, Liudmila; Blandini, Fabio (2019-07-30). "Parkinson's Disease in Women and Men: What's the Difference?". Journal of Parkinson's Disease. 9 (3): 501–515. doi:10.3233/JPD-191683. PMC   6700650 . PMID   31282427.
  32. Qian, Chenyue; Liu, Jingjin; Liu, Huadong (2023-10-03). "Targeting estrogen receptor signaling for treating heart failure". Heart Failure Reviews. doi: 10.1007/s10741-023-10356-9 . ISSN   1573-7322. PMC   10904494 . S2CID   263607262.
  33. Mendelsohn, Michael E.; Karas, Richard H. (2010-07-01). "Rapid progress for non-nuclear estrogen receptor signaling". Journal of Clinical Investigation. 120 (7): 2277–2279. doi:10.1172/JCI43756. ISSN   0021-9738. PMC   2898619 . PMID   20577045.
  34. Fattore, Liana; Melis, Miriam; Fadda, Paola; Fratta, Walter (August 2014). "Sex differences in addictive disorders". Frontiers in Neuroendocrinology. 35 (3): 272–284. doi:10.1016/j.yfrne.2014.04.003. PMID   24769267. S2CID   45385549.
  35. Martinez, Luis A.; Peterson, Brittni M.; Meisel, Robert L.; Mermelstein, Paul G. (September 2014). "Estradiol facilitation of cocaine-induced locomotor sensitization in female rats requires activation of mGluR5". Behavioural Brain Research. 271: 39–42. doi:10.1016/j.bbr.2014.05.052. PMC   4636080 . PMID   24893316.
  36. Tonn Eisinger, Katherine R.; Larson, Erin B.; Boulware, Marissa I.; Thomas, Mark J.; Mermelstein, Paul G. (May 2018). "Membrane estrogen receptor signaling impacts the reward circuitry of the female brain to influence motivated behaviors". Steroids. 133: 53–59. doi:10.1016/j.steroids.2017.11.013. PMC   5864533 . PMID   29195840.