BHLHE41

Last updated
BHLHE41
Identifiers
Aliases BHLHE41 , DEC2, SHARP1, BHLHe41, HDEC2, SHARP-1, BHLHB3, Basic Helix-Loop-Helix Family Member E41, Basic Helix-Loop-Helix Family, Member E41, Class E Basic Helix-Loop-Helix Protein 41, Class B Basic Helix-Loop-Helix Protein 3, Basic Helix-Loop-Helix Domain Containing, Class B, 3, Differentially Expressed In Chondrocytes 2, Differentially Expressed In Chondrocytes Protein 2, Enhancer-Of-Split And Hairy-Related Protein 1, FNSS1
External IDs OMIM: 606200 MGI: 1930704 HomoloGene: 137401 GeneCards: BHLHE41
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_030762

NM_001271768
NM_024469

RefSeq (protein)

NP_110389

NP_001258697
NP_077789

Location (UCSC) Chr 12: 26.12 – 26.13 Mb Chr 6: 145.8 – 145.81 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

"Basic helix-loop-helix family, member e41", or BHLHE41, is a gene that encodes a basic helix-loop-helix transcription factor repressor protein in various tissues of both humans and mice. [5] [6] [7] [8] It is also known as DEC2, hDEC2, and SHARP1, and was previously known as "basic helix-loop-helix domain containing, class B, 3", or BHLHB3. [9] BHLHE41 is known for its role in the circadian molecular mechanisms that influence sleep quantity as well as its role in immune function and the maturation of T helper type 2 cell lineages associated with humoral immunity. [10] [11]

Contents

History

Klaus-Armin Nave's lab identified BHLHE41/SHARP1 and BHLHE40/SHARP2 as a novel subfamily in the basic helix-loop-helix (BHLH) protein family. [12] They differentiated BHLHE41/SHARP1 and BHLHE40/SHARP2 from other BHLH-protein encoding genes since they are not transcribed until the end of embryonic development. The DNA sequence of BHLHE41 was first obtained by Dr. Yukia Kato's lab through a cDNA library search. Particularly, they obtained the sequence of BHLHE40/DEC1 and conducted an expressed sequence tag (EST) search to identify the BHLHE41/DEC2 sequence. BHLHE41/DEC2 and BHLHE40/DEC1 share 97% homology in the BHLH domain. [13] After the identification of the BHLHE41 gene, Dr. Ken-Ichi Honma's lab characterized its role as a regulator in the mammalian circadian clock. [14] The role of BHLHE41 in other pathways is still being fully characterized.

Structure

BHLHE41 is a member of the DEC subfamily within the basic helix-loop-helix (bHLH) proteins gene family. [13] [15] BHLHE41 was mapped to human chromosome 12: 26,120,026-26-125-127 reverse strand and has a total length of 5,101 base pairs. [16] The gene is also mapped to 6 G2-G3 on the mouse chromosome, and 4q43 distal-q4 on the rat chromosome respectively. [13] BHLHE41 has 3 known splice variants. BHLHE41-002 [17] and BHLHE41-003 [18] are retained introns and do not code for a protein. BHLHE41-001 contains 5 coding exons, has a transcript length of 3,837 base pairs, and encodes the 482 amino acid BHLHE41 protein. [19] BHLHE40 is the paralogue of BHLHE41. [20] BHLHE41 currently has 165 known orthologs. [21]

The BHLHE41 protein has a myc-type, basic helix-loop-helix (bHLH) domain and an orange domain. [22] The orange domain is a 30 residue sequence located on the carboxy-terminal end relative to the BHLH domain of the protein whose function is still unclear. [23] The basic helix-loop-helix domain allows members of the protein family to dimerize with each other to affect gene transcription through binding to specific DNA sequences. [24] BHLHE41 protein also has alanine and glycine-rich regions in the C-terminal, and lacks the WRPW motif for interaction with the corepressor Groucho. [13]

BHLHE41 recruits the histone methyltransferase G9a and histone deacetylases HDAC1 and Sirt1 to mediate chromatin modifications that repress target gene expression. [25]

Function

Circadian

BHLHE41 is expressed in the suprachiasmatic nucleus with levels peaking during subjective day. [14] The gene encodes for a transcription factor that belongs to the Hairy/Enhancer of Split (Hes) subfamily of basic helix-loop-helix factor genes which encode transcriptional repressors that function as downstream targets to regulate cell fate during tissue development. [26] BHLHE41 acts as a transcriptional repressor and as a regulator of the Circadian clock. [8] In the clock, the transcriptional factors Clock and Bmal form a heterodimer. This heterodimer binds to the E-Box promoter element, thereby promoting transcription of downstream genes such as Per and BHLHe41. [27] After transcription and translation, the protein product of BHLHE41 (DEC2) reenters the nucleus and competes with Clock-Bmal1 heterodimer for E-Box element binding (through competitive inhibition); this acts as a suppressor for per gene transcription. [14]

Non-circadian

BHLHE41 has also been implicated in multiple other pathways. Deregulation of BHLHE41 transcription levels has been characterized as a marker in the progression of several cancers. Low levels of BHLHE41 transcript has been associated with tumor growth suggesting that BHLHE41 suppresses tumor proliferation; however, no definite mechanism of action has been discovered. [28] Dec2 has also been hypothesized to be involved in the regulation of immune responses. [10] Further research on characterizing these pathways and BHLHE41's specific role is still being conducted.

In mice lacking SHARP1/BHLHE41 and SHARP2, IGF-2 is elevated and leads to enhanced memory consolidation. [29]

Mutations

There is a known amino acid point mutation of DEC2 that affects the regulation of the biological processes of sleep timing and duration in humans. [10] Although the exact mechanisms of action are still unknown, previous studies suggest that the mutation poses similar effects in both humans and mice. [10]

DEC2-P385R

A point mutation substituting C to G in DEC2/BHLHE41 DNA sequence results in the substitution of proline at position 385 with arginine. The proline at position 385 (384 according to the talk page) of BHLHE41 is located close to the C-terminal histone deacetylase-interacting region of BHLHE41, which is a highly conserved region within the proline-rich domain. [24] This mutation mitigates BHLHe41's transcriptional inhibitory function. [30] Mice with this mutation sleep less. They get less of both REM and non-REM sleep and recover more easily from sleep deprivation. [10] These effects are not seen in BHLHE41 knockout mice. As such, scholars believe the Dec2-P385R mutation is a dominant negative mutation. [31]

Ying-Hui Fu's lab found this mutation in familial natural short sleepers (FNSS). [8] [32] [24] FNSS naturally sleep less, about 6-6.5 hours a night. [10] It is not clear how this works. It is possible BHLHE41 makes sleep shorter through pathways independent of those which regulate the molecular core clock, such as the pathway involving the PER2 gene. [10] Both BHLHE41 and PER2 also affect immune function, maybe because tuning the immune system could be one of the reasons we sleep at all. [10]

BHLHE41 knockout

BHLHE41 knockout mice, also known as BHLHE41 -/- or BHLHE41 null, showed no change in their free-running period with respect to activity. After being exposed to an in vivo model of allergic asthma, BHLHE41 knockout mice show decreased TH2 cytokine production, defective TH2 responses after being repeatedly stimulated with OVA peptide, and reduced alveolar infiltrate. [10] BHLHE41 knockout mice had increased post-natal regeneration of muscle after injury. However, these mice showed no deficits in embryonic muscle repair. [33]

Clinical significance

Immune system

BHLHE41 has been shown to be regulator of T-cell activation. BHLHE41 upregulates CD25 expression through a Stat6-dependent mechanism, which enhances the IL-2 receptor-mediated signal pathway, which promotes TH2 differentiation. Gata3 enhances T helper cell 2 (Th2) differentiation signals by regulating BHLHE41 expression through an autoregulatory loop. [25]

Hypoxia

Hypoxia stimulates hypoxia-inducible factor-1 alpha (HIF-1α) to be produced, which initiates the hypoxic response. HIF-1α induces the transcription of BHLHE41 and BHLHE40. This is believed to repress cell proliferation, which is not conducive to a hypoxic environment. [33] BHLHE41 can also block a hypoxic response by presenting HIF-1α to a proteasome complex, which induces HIF-1α's degradation. [25]

Muscle

BHLHE41 has been shown to repress myogenic differentiation by inhibiting MyoD activity through multiple mechanisms. When BHLHE41 dimerizes with MyoD and E47, it prevents the formation of MyoD-E47 heterodimers, which are functional. When BHLHE41 is sumoylated at K240 and K255, it recruits the histone methyltransferase G9a. G9a then catalyzes repressive histone 3 lysine 9 dimethylation (H3K9me2) at promoter sites of target genes of MyoD. G9a also methylates MyoD, which inhibits MyoD's transcriptional activity. [25]

BHLHE41 and BHLHE40 are transcriptional targets of SREBP-1 (also known as ADD-1) isoforms SREBP-1a and SREBP-1c. After being induced by SREBP-1, BHLHE41 and BHLHE40 have been shown to repress myogenesis by blocking MYOD1 transcription. BHLHE40 and BHLHE41 are also known to alter the expression of several contractile proteins and mitochondrial proteins in skeletal muscle. BHLHE41 and BHLHE40 also repress SREBP-1. This forms a negative feedback loop between SREBP-1, BHLHE40, and BHLHE41 in muscles that runs on a 24-hour circadian cycle, which has a 12-hour offset between SREBP-1 and BHLHE40/BHLHE41. [33] In addition, BHLHE41 is known to inhibit inflammation and adipogenic differentiation in muscles. [34]

Sarcoma, oral cancer, liver cancer, and colon cancer

BHLHE41 has been shown to suppress the expression of vascular endothelial growth factor (VEGF) in sarcoma cells and oral cancer cells. BHLHE41 also suppresses cytochrome P450 2D6 (CYP2D6) in hepatocellular carcinoma cells. While BHLHE40 induces apoptosis, senescence, and epithelial-mesenchymal transition (EMT) in tumor cells, BHLHE41 shows a circadian expression and inhibits EMT, apoptosis, and metastasis in sarcoma cells and hepatocellular carcinoma cells. [34] It has been shown that the normal tissue adjacent to colon carcinomas show high levels of BHLHE41 expression. [35] Research is currently examining whether BHLHE40 and BHLHE41 can be used as target genes for chemotherapy. [34]

Breast cancer

BHLHE41 is thought to be a critical regulator of the metastasis of triple-negative-breast cancer (TNBC). [36] Regulated by the p63 metastasis suppressor, BHLHE41 inhibits TNBC through the inhibition of HIF-1α and hypoxia-inducible factor 2α (HIF-2α). [36] Studies have shown that BHLHE41 is both required and sufficient to limit the expression of HIF-target genes, by mechanistically binding to HIFs and promoting proteasomal degradation. [36] Breast cancer tumors that show high expression of BHLHE41 and CyclinG2 are believed to have a lower metastatic risk. [37] [38]

Related Research Articles

<span class="mw-page-title-main">Sterol regulatory element-binding protein</span> Protein family

Sterol regulatory element-binding proteins (SREBPs) are transcription factors that bind to the sterol regulatory element DNA sequence TCACNCCAC. Mammalian SREBPs are encoded by the genes SREBF1 and SREBF2. SREBPs belong to the basic-helix-loop-helix leucine zipper class of transcription factors. Unactivated SREBPs are attached to the nuclear envelope and endoplasmic reticulum membranes. In cells with low levels of sterols, SREBPs are cleaved to a water-soluble N-terminal domain that is translocated to the nucleus. These activated SREBPs then bind to specific sterol regulatory element DNA sequences, thus upregulating the synthesis of enzymes involved in sterol biosynthesis. Sterols in turn inhibit the cleavage of SREBPs and therefore synthesis of additional sterols is reduced through a negative feed back loop.

<span class="mw-page-title-main">Myogenin</span> Mammalian protein found in Homo sapiens

Myogenin, is a transcriptional activator encoded by the MYOG gene. Myogenin is a muscle-specific basic-helix-loop-helix (bHLH) transcription factor involved in the coordination of skeletal muscle development or myogenesis and repair. Myogenin is a member of the MyoD family of transcription factors, which also includes MyoD, Myf5, and MRF4.

<span class="mw-page-title-main">CLOCK</span> Human protein and coding gene

CLOCK is a gene encoding a basic helix-loop-helix-PAS transcription factor that is known to affect both the persistence and period of circadian rhythms.

An E-box is a DNA response element found in some eukaryotes that acts as a protein-binding site and has been found to regulate gene expression in neurons, muscles, and other tissues. Its specific DNA sequence, CANNTG, with a palindromic canonical sequence of CACGTG, is recognized and bound by transcription factors to initiate gene transcription. Once the transcription factors bind to the promoters through the E-box, other enzymes can bind to the promoter and facilitate transcription from DNA to mRNA.

<span class="mw-page-title-main">HIF1A</span> Protein-coding gene in the species Homo sapiens

Hypoxia-inducible factor 1-alpha, also known as HIF-1-alpha, is a subunit of a heterodimeric transcription factor hypoxia-inducible factor 1 (HIF-1) that is encoded by the HIF1A gene. The Nobel Prize in Physiology or Medicine 2019 was awarded for the discovery of HIF.

<span class="mw-page-title-main">NPAS2</span> Protein-coding gene in the species Homo sapiens

Neuronal PAS domain protein 2 (NPAS2) also known as member of PAS protein 4 (MOP4) is a transcription factor protein that in humans is encoded by the NPAS2 gene. NPAS2 is paralogous to CLOCK, and both are key proteins involved in the maintenance of circadian rhythms in mammals. In the brain, NPAS2 functions as a generator and maintainer of mammalian circadian rhythms. More specifically, NPAS2 is an activator of transcription and translation of core clock and clock-controlled genes through its role in a negative feedback loop in the suprachiasmatic nucleus (SCN), the brain region responsible for the control of circadian rhythms.

<span class="mw-page-title-main">Rev-ErbA alpha</span> Protein-coding gene in the species Homo sapiens

Rev-Erb alpha (Rev-Erbɑ), also known as nuclear receptor subfamily 1 group D member 1 (NR1D1), is one of two Rev-Erb proteins in the nuclear receptor (NR) family of intracellular transcription factors. In humans, REV-ERBɑ is encoded by the NR1D1 gene, which is highly conserved across animal species.

<span class="mw-page-title-main">ARNTL2</span> Protein-coding gene in humans

Aryl hydrocarbon receptor nuclear translocator-like 2, also known as Arntl2, Mop9, Bmal2, or Clif, is a gene.

<span class="mw-page-title-main">Sterol regulatory element-binding protein 1</span> Protein-coding gene in the species Homo sapiens

Sterol regulatory element-binding transcription factor 1 (SREBF1) also known as sterol regulatory element-binding protein 1 (SREBP-1) is a protein that in humans is encoded by the SREBF1 gene.

<span class="mw-page-title-main">Sterol regulatory element-binding protein 2</span> Protein-coding gene in the species Homo sapiens

Sterol regulatory element-binding protein 2 (SREBP-2) also known as sterol regulatory element binding transcription factor 2 (SREBF2) is a protein that in humans is encoded by the SREBF2 gene.

<span class="mw-page-title-main">NEUROD1</span> Protein-coding gene in the species Homo sapiens

Neurogenic differentiation 1 (Neurod1), also called β2, is a transcription factor of the NeuroD-type. It is encoded by the human gene NEUROD1.

<span class="mw-page-title-main">ID3 (gene)</span> Protein-coding gene in the species Homo sapiens

DNA-binding protein inhibitor ID-3 is a protein that in humans is encoded by the ID3 gene.

<span class="mw-page-title-main">HES1</span> Protein-coding gene in the species Homo sapiens

Transcription factor HES1 is a protein that is encoded by the Hes1 gene, and is the mammalian homolog of the hairy gene in Drosophila. HES1 is one of the seven members of the Hes gene family (HES1-7). Hes genes code nuclear proteins that suppress transcription.

<span class="mw-page-title-main">GTF2IRD1</span> Protein-coding gene in the species Homo sapiens

General transcription factor II-I repeat domain-containing protein 1 is a protein that in humans is encoded by the GTF2IRD1 gene.

<span class="mw-page-title-main">BHLHB2</span> Protein-coding gene in the species Homo sapiens

Class E basic helix-loop-helix protein 40 is a protein that in humans is encoded by the BHLHE40 gene.

<span class="mw-page-title-main">HEY2</span> Protein-coding gene in the species Homo sapiens

Hairy/enhancer-of-split related with YRPW motif protein 2 (HEY2) also known as cardiovascular helix-loop-helix factor 1 (CHF1) is a protein that in humans is encoded by the HEY2 gene.

<span class="mw-page-title-main">ASCL2</span> Protein-coding gene in humans

Achaete-scute complex homolog 2 (Drosophila), also known as ASCL2, is an imprinted human gene.

<span class="mw-page-title-main">HES5</span> Protein-coding gene in the species Homo sapiens

Transcription factor HES-5 is a protein that in humans is encoded by the HES5 gene.

<span class="mw-page-title-main">Basic helix-loop-helix ARNT-like protein 1</span> Human protein and coding gene

Basic helix-loop-helix ARNT-like protein 1 or aryl hydrocarbon receptor nuclear translocator-like protein 1 (ARNTL), or brain and muscle ARNT-like 1 is a protein that in humans is encoded by the BMAL1 gene on chromosome 11, region p15.3. It's also known as MOP3, and, less commonly, bHLHe5, BMAL, BMAL1C, JAP3, PASD3, and TIC.

<i>Cycle</i> (gene)

Cycle (cyc) is a gene in Drosophila melanogaster that encodes the CYCLE protein (CYC). The Cycle gene (cyc) is expressed in a variety of cell types in a circadian manner. It is involved in controlling both the sleep-wake cycle and circadian regulation of gene expression by promoting transcription in a negative feedback mechanism. The cyc gene is located on the left arm of chromosome 3 and codes for a transcription factor containing a basic helix-loop-helix (bHLH) domain and a PAS domain. The 2.17 kb cyc gene is divided into 5 coding exons totaling 1,625 base pairs which code for 413 aminos acid residues. Currently 19 alleles are known for cyc. Orthologs performing the same function in other species include ARNTL and ARNTL2.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000123095 Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000030256 Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "BHLHE41 basic helix-loop-helix family, member e41 [ Homo sapiens (human) ]". National Center for Biotechnology Information.
  6. "Bhlhe41 basic helix-loop-helix family, member e41 [ Mus musculus (house mouse) ]". NCBI.
  7. Stevens JD, Roalson EH, Skinner MK (November 2008). "Phylogenetic and expression analysis of the basic helix-loop-helix transcription factor gene family: genomic approach to cellular differentiation". Differentiation; Research in Biological Diversity. 76 (9): 1006–22. doi:10.1111/j.1432-0436.2008.00285.x. PMC   5728086 . PMID   18557763.
  8. 1 2 3 "Entrez Gene: BHLHB3 basic helix-loop-helix domain containing, class B, 3".
  9. "Basic Helix-Loop-Helix Family, Member E41". Weizmann Institute of Science. Archived from the original on 2014-05-28. Retrieved 2014-05-27.
  10. 1 2 3 4 5 6 7 8 9 Kurien PA, Chong SY, Ptáček LJ, Fu YH (October 2013). "Sick and tired: how molecular regulators of human sleep schedules and duration impact immune function". Current Opinion in Neurobiology. 23 (5): 873–9. doi:10.1016/j.conb.2013.04.014. PMC   3766463 . PMID   23702243.
  11. Yang XO, Angkasekwinai P, Zhu J, Peng J, Liu Z, Nurieva R, Liu X, Chung Y, Chang SH, Sun B, Dong C (December 2009). "Requirement for the basic helix-loop-helix transcription factor Dec2 in initial TH2 lineage commitment". Nature Immunology. 10 (12): 1260–6. doi:10.1038/ni.1821. PMC   2784129 . PMID   19881507.
  12. Rossner MJ, Dörr J, Gass P, Schwab MH, Nave KA (1997). "SHARPs: mammalian enhancer-of-split- and hairy-related proteins coupled to neuronal stimulation". Molecular and Cellular Neurosciences. 9 (5–6): 460–75. doi:10.1006/mcne.1997.0640. PMID   9361282. S2CID   39552567.
  13. 1 2 3 4 Fujimoto K, Shen M, Noshiro M, Matsubara K, Shingu S, Honda K, Yoshida E, Suardita K, Matsuda Y, Kato Y (January 2001). "Molecular cloning and characterization of DEC2, a new member of basic helix-loop-helix proteins". Biochemical and Biophysical Research Communications. 280 (1): 164–71. doi:10.1006/bbrc.2000.4133. PMID   11162494.
  14. 1 2 3 Honma S, Kawamoto T, Takagi Y, Fujimoto K, Sato F, Noshiro M, Kato Y, Honma K (October 2002). "Dec1 and Dec2 are regulators of the mammalian molecular clock". Nature. 419 (6909): 841–4. Bibcode:2002Natur.419..841H. doi:10.1038/nature01123. PMID   12397359. S2CID   4426418.
  15. "BHLHE41 Symbol Report | HUGO Gene Nomenclature Committee". www.genenames.org. Retrieved 2017-04-13.
  16. "Gene: BHLHE41 (ENSG00000123095) - Summary - Homo sapiens - Ensembl genome browser 88". www.ensembl.org. Retrieved 2017-04-13.
  17. "Transcript: BHLHE41-002 (ENST00000541271.1) - Summary - Homo sapiens - Ensembl genome browser 88". www.ensembl.org. Retrieved 2017-04-13.
  18. "Transcript: BHLHE41-003 (ENST00000394326.2) - Summary - Homo sapiens - Ensembl genome browser 88". www.ensembl.org. Retrieved 2017-04-13.
  19. "Transcript: BHLHE41-001 (ENST00000242728.4) - Summary - Homo sapiens - Ensembl genome browser 88". www.ensembl.org. Retrieved 2017-04-13.
  20. "Gene: BHLHE41 (ENSG00000123095) - Paralogues - Homo sapiens - Ensembl genome browser 88". www.ensembl.org. Retrieved 2017-04-13.
  21. "ortholog_gene_79365[group] - Gene - NCBI". www.ncbi.nlm.nih.gov. Retrieved 2017-04-13.
  22. "Transcript: BHLHE41-001 (ENST00000242728.4) - Domains & features - Homo sapiens - Ensembl genome browser 88". www.ensembl.org. Retrieved 2017-04-13.
  23. Tulzer W (June 1979). "[The child abuse syndrome]". Wiener Medizinische Wochenschrift. 129 (12): 318–20. doi: 10.1186/gb-2004-5-6-226 . PMC   463060 . PMID   15186484.
  24. 1 2 3 He Y, Jones CR, Fujiki N, Xu Y, Guo B, Holder JL, Rossner MJ, Nishino S, Fu YH (August 2009). "The transcriptional repressor DEC2 regulates sleep length in mammals". Science. 325 (5942): 866–70. Bibcode:2009Sci...325..866H. doi:10.1126/science.1174443. PMC   2884988 . PMID   19679812.
  25. 1 2 3 4 Ow JR, Tan YH, Jin Y, Bahirvani AG, Taneja R (2014). "Stra13 and Sharp-1, the non-grouchy regulators of development and disease". BHLH Transcription Factors in Development and Disease. Vol. 110. pp. 317–38. doi:10.1016/B978-0-12-405943-6.00009-9. ISBN   9780124059436. PMID   25248481.{{cite book}}: |journal= ignored (help)
  26. Piscione TD, Wu MY, Quaggin SE (October 2004). "Expression of Hairy/Enhancer of Split genes, Hes1 and Hes5, during murine nephron morphogenesis". Gene Expression Patterns. 4 (6): 707–11. doi:10.1016/j.modgep.2004.04.007. PMID   15465493.
  27. Kato Y, Kawamoto T, Fujimoto K, Noshiro M (2014). "DEC1/STRA13/SHARP2 and DEC2/SHARP1 coordinate physiological processes, including circadian rhythms in response to environmental stimuli". BHLH Transcription Factors in Development and Disease. Vol. 110. pp. 339–72. doi:10.1016/B978-0-12-405943-6.00010-5. ISBN   9780124059436. PMID   25248482.{{cite book}}: |journal= ignored (help)
  28. Li P, Jia YF, Ma XL, Zheng Y, Kong Y, Zhang Y, Zong S, Chen ZT, Wang YS (2016). "DEC2 suppresses tumor proliferation and metastasis by regulating ERK/NF-κB pathway in gastric cancer". American Journal of Cancer Research. 6 (8): 1741–57. doi:10.1158/1538-7445.AM2016-1741. PMC   5004076 . PMID   27648362.
  29. Shahmoradi A, Radyushkin K, Rossner MJ (July 2015). "Enhanced memory consolidation in mice lacking the circadian modulators Sharp1 and -2 caused by elevated Igf2 signaling in the cortex". Proceedings of the National Academy of Sciences of the United States of America. 112 (27): E3582–9. Bibcode:2015PNAS..112E3582S. doi: 10.1073/pnas.1423989112 . PMC   4500222 . PMID   26100875.
  30. Jones CR, Huang AL, Ptáček LJ, Fu YH (May 2013). "Genetic basis of human circadian rhythm disorders". Experimental Neurology. Circadian rhythms and sleep disorders. 243: 28–33. doi:10.1016/j.expneurol.2012.07.012. PMC   3514403 . PMID   22849821.
  31. Zhang Y, Zhang Y, Gu W, Sun B (2014). "Th1/Th2 Cell Differentiation and Molecular Signals". T Helper Cell Differentiation and Their Function. Advances in Experimental Medicine and Biology. Vol. 841. pp. 15–44. doi:10.1007/978-94-017-9487-9_2. ISBN   978-94-017-9486-2. PMID   25261203. S2CID   20369654.
  32. Pellegrino R, Kavakli IH, Goel N, Cardinale CJ, Dinges DF, Kuna ST, Maislin G, Van Dongen HP, Tufik S, Hogenesch JB, Hakonarson H, Pack AI (August 2014). "A novel BHLHE41 variant is associated with short sleep and resistance to sleep deprivation in humans". Sleep. 37 (8): 1327–36. doi:10.5665/sleep.3924. PMC   4096202 . PMID   25083013.
  33. 1 2 3 Gorski JP, Price JL (2016). "Bone muscle crosstalk targets muscle regeneration pathway regulated by core circadian transcriptional repressors DEC1 and DEC2". BoneKEy Reports. 5: 850. doi:10.1038/bonekey.2016.80. PMC   5111231 . PMID   27867498.
  34. 1 2 3 Sato F, Bhawal UK, Yoshimura T, Muragaki Y (2016). "DEC1 and DEC2 Crosstalk between Circadian Rhythm and Tumor Progression". Journal of Cancer. 7 (2): 153–9. doi:10.7150/jca.13748. PMC   4716847 . PMID   26819638.
  35. Yamada K, Miyamoto K (September 2005). "Basic helix-loop-helix transcription factors, BHLHB2 and BHLHB3; their gene expressions are regulated by multiple extracellular stimuli". Frontiers in Bioscience. 10 (1–3): 3151–71. doi: 10.2741/1772 . PMID   15970569.
  36. 1 2 3 Montagner M, Enzo E, Forcato M, Zanconato F, Parenti A, Rampazzo E, Basso G, Leo G, Rosato A, Bicciato S, Cordenonsi M, Piccolo S (July 2012). "SHARP1 suppresses breast cancer metastasis by promoting degradation of hypoxia-inducible factors". Nature. 487 (7407): 380–4. Bibcode:2012Natur.487..380M. doi:10.1038/nature11207. PMID   22801492. S2CID   4402132.
  37. Noshiro M, Kawamoto T, Furukawa M, Fujimoto K, Yoshida Y, Sasabe E, Tsutsumi S, Hamada T, Honma S, Honma K, Kato Y (April 2004). "Rhythmic expression of DEC1 and DEC2 in peripheral tissues: DEC2 is a potent suppressor for hepatic cytochrome P450s opposing DBP". Genes to Cells. 9 (4): 317–29. doi: 10.1111/j.1356-9597.2004.00722.x . PMID   15066123. S2CID   36831167.
  38. Piccolo S, Enzo E, Montagner M (August 2013). "p63, Sharp1, and HIFs: master regulators of metastasis in triple-negative breast cancer". Cancer Research. 73 (16): 4978–81. doi: 10.1158/0008-5472.CAN-13-0962 . PMID   23913939.

Further reading

This article incorporates text from the United States National Library of Medicine, which is in the public domain.